The effects of salinity on growth and development of the euryhaline Ochlerotatus taeniorhynchus and the freshwater Aedes aegyptiare compared. O. taeniorhynchus grow larger, and have greater intrinsic growth rates, than A. aegypti. Females of each species attain greater mass, take longer to develop, and have greater growth rates than do males. In O. taeniorhynchus, pupal mass, larval stage duration and growth rates (dry mass) increase with salinity, whereas growth rates (wet mass) remain constant across salinities, reflecting a decrease in percent body water. The pupal mass (wet or dry) of O. taeniorhynchusis determined primarily by effects of salinity on the rate of assimilation of dry mass, because the latter contributes very strongly to final pupal mass in both species. In contrast, the duration of A. aegypti larval stage follows a υ-shaped curve, with most rapid development at intermediate salinities. Growth rates of A. aegypti decrease with increasing salinity, and percent body water is constant across salinities. As for O. taeniorhynchus, duration of A. aegypti larval stage increases at high salinity. However, this increase in larval stage duration cannot compensate for the decrease in growth rate at high salinity, resulting in an overall decrease in both wet and dry pupal mass at high salinity. Thus,salinity has fundamentally different effects on developmental programs and phenotypic plasticity in the two species investigated.

You do not currently have access to this content.