SUMMARY
The lamprey swims by caudally directed lateral undulations of its body. During swimming the animal is oriented with its dorsal side up, and any deviation from this posture (roll tilt) elicits a corrective motor response aimed at restoring the normal orientation. Video recording was used to study the kinematic pattern of the response to a 90° roll tilt imposed in the intact lamprey. The corrective responses were associated with specific modifications of the swimming movements. The plane of locomotor undulations deviated from the normal, i.e. frontal plane in one direction at the beginning of the rotation and in the opposite direction at its end. A similar motor pattern was also observed in the anterior part of the body of lampreys in which the spinal cord had been transected in the mid-body area, when performing postural corrections. It could also be observed during roll turns performed by lampreys after a rostral hemisection of the spinal cord. We argue that these modifications of the locomotor pattern generate the moments of force necessary for initiation and termination of the corrective roll turn. Possible neuronal mechanisms causing the corrective movements are discussed.