SUMMARY
Many marine animals track odor plumes to their source. Although studies of plume-tracking behavior have been performed in unidirectional flow, benthic animals such as crustaceans live in coastal habitats characterized by waves. We compared signal encounters by odor-plume-tracking stomatopods (mantis shrimp) in wave-affected and unidirectional flow in a flume. Stomatopods are small enough that we can study their natural behavior in a flume. They sample odors by flicking their antennules. A thin sheet of laser light illuminating an odor plume labeled with dye [planar laser induced fluorescence (PLIF) technique] permitted us to measure the instantaneous odor concentration encountered by the animal's chemosensory organs (antennules) while it tracked the plume. We simultaneously measured behavior and the high-resolution odor signal at the spatial and temporal scale of the animal. We found that the navigating animal encountered odor filaments more often in wave-affected flow than in unidirectional flow. Odor filaments along the animals' antennules were significantly wider and of higher concentration in waves than in unidirectional flow.