Mechanisms of copper transport into purified mitochondrial suspensions prepared from the hepatopancreas of the Atlantic lobster Homarus americanus were investigated. Mitochondria were purified by combining methods of differential and Percoll-gradient centrifugation, and copper transport was studied using the copper-sensitive fluorescent dye Phen Green. Copper transport by this mitochondrial preparation was kinetically the sum of saturable and non-saturable transfer components. Addition of 500 μmol l–1 Ca2+ or 500 nmol l–1 Ruthenium Red abolished the non-saturable copper transport component, significantly (P<0.01) reduced the apparent binding affinity of the saturable transport component, but was without effect (P>0.05) on the apparent maximal transport velocity of the saturable transfer process. The antiport inhibitor diltiazem (500 μmol l–1) acted as a mixed inhibitor of the saturable transport mechanism, but had no effect on the non-saturable component of transfer. These results suggest that the non-saturable copper influx process was probably by way of the well-known Ruthenium-Red-sensitive Ca2+ uniporter and that the saturable transport component was probably due to a combination of both the Na+-dependent, diltiazem-sensitive 1Ca2+/2Na+ antiporter and the Na+-independent, diltiazem-insensitive 1Ca2+/2H+ antiporter. A model is discussed relating these mitochondrial copper uptake processes to the transfer of metal ions across the epithelial brush-border membrane.

You do not currently have access to this content.