The behavior of crabs tracking odor in turbulent chemical plumes was compared to the performance of computer simulations of search behavior operating in similar chemical signal environments. The movement of blue crabs(Callinectes sapidus) towards a source of food odor was studied in controlled flow conditions in a flume. The evolving chemical stimulus field of a similar chemical source in an equivalent flow environment was captured by recording concentration patterns of a fluorescent tracer. Hypotheses about the sensory mechanisms employed by the crabs were tested by computer simulation using the recorded fluorescence as the stimulus. The results demonstrate that a simple model combining chemotropotaxis (simultaneous, spatial comparisons of chemical signals) and odor-stimulated upstream movement (rheotaxis) is sufficient to explain the efficient movements towards the source displayed by foraging crabs. Spatial integration around each sensor improves performance significantly, but the number of sensors does not have a large impact on performance. The weighting of information from chemical versus flow signals can substantially change simulation performance, resulting in more or less congruence between the behavior of simulations and that of crabs, which suggests the general importance of both sources of information for successful odor-guided navigation.

You do not currently have access to this content.