SUMMARY
Although aquatic animals are generally believed to export nitrogenous waste by diffusion of NH3 or NH4+ across external epithelia, evidence for active ammonia excretion has been found in a number of species. In the euryhaline green shore crab Carcinus maenas, active excretion of ammonia across isolated gills is reduced by inhibitors of the Na+/K+-ATPase and vacuolar-type H+-ATPase. In addition, a functional dynamic microtubule network is necessary, since application of colchicine, taxol or thiabendazole leads to almost complete blockage of active and gradient-driven ammonia excretion. Actin filaments seem not to play a role in the excretory process. The NH4+-dependent short-circuit current and the conductance of the isolated cuticle were reduced in a dose-dependent manner by amiloride,a non-specific inhibitor of the Na+/H+ exchanger and Na+ channels. Combined with an analysis of gill morphology, the strong intracellular but weak apical abundance of V-type H+-ATPase and the fact that ammonia flux rates are equal under buffered and unbuffered experimental conditions, our observations suggest a hypothetical model of transepithelial ammonia movement that features active uptake across the basolateral membrane, sequestration in acidified vesicles, vesicle transport via microtubules and exocytosis at the apical membrane.