ABSTRACT
Weakly electric fish of the pulse type electrolocate objects in the dark by emitting discrete electric organ discharges (EODs) separated by intervals of silence. Two neighbouring pulse-type fish often reduce the risk of discharging simultaneously by means of an ‘echo response’: one fish will respond to a neighbour’s EOD with a discharge of its own following at a fixed short latency so that its EOD will occur long before the next EOD of its neighbour. Although working elegantly for two partners, this simple strategy should fail in larger groups because two fish could discharge in response to the same EOD of a third fish. Here, I show that the mormyrid fish Gnathonemus petersii could use a simple mechanism to reduce this problem. Individuals were stimulated with two closely spaced pulses, the second following so as to coincide with an echo given in response to the first. All the fish examined were able to respond more to the second pulse so that most of their echoes did not collide with the second pulse. An analysis was made of how echoing more to the second pulse depends on (i) the delay at which the stimulus followed the last spontaneous EOD, (ii) the spontaneous firing rate, (iii) the intensity of the stimulus, (iv) the number of stimulus pulses, (v) the interval between stimulus pulses, and (vi) the level of previous stimulation with double pulses. The results suggest that echoing more in response to the second pulse is probably because the first pulse causes an after-effect whose inferred properties would be compatible with the properties of the mormyromast afferences thought to be involved in the echo response.