This study examines calcification in planulae and polyps of the hydroid Hydractinia symbiolongicarpus. We observed that established colonies produce a crystalline mat on their substratum and that crystals visible by polarized light microscopy occur in the vacuoles of the gastrodermal cells of both polyps and planulae. The crystalline mat was found by infrared spectroscopy to contain calcium carbonate in the form of aragonite. The composition of the vacuolar crystals and the cellular mechanisms for manufacturing them were explored by alteration of calcium levels in the environment and by the use of pharmacological agents (acetazolamide, caffeine, DIDS, diltiazem, nifedipine, procaine, Ruthenium Red, ryanodine and verapamil) that affect cellular uptake and transport of calcium and bicarbonate. The results indicated that the crystals in the vacuoles contained calcium carbonate. The gastrodermal cells are hypothesized to serve as a physiological sink for excess calcium that enters the organism during motility, secretion and metamorphosis of the planula, and to create a crystalline substratum for the colony of polyps.

You do not currently have access to this content.