ABSTRACT
The postprandial increase in metabolic rate associated with consuming, assimilating and excreting a meal is often termed the heat increment of feeding (HIF). The metabolic heat production of star-nosed moles, Condylura cristata, held at thermoneutrality was monitored for 4 h following a single 10 min session of feeding on a ration consisting of 0 g (controls), 3.5 g or 10 g of earthworms. Coefficients for metabolizable energy digestibility and digesta passage rate of earthworms fed to C. cristata were also determined. We then tested whether feeding-induced thermogenesis substitutes partially or completely for thermoregulatory heat production in these animals exposed to sub-thermoneutral air temperatures (9–24 °C). A single feeding on earthworms had both short- and long-term effects on the metabolic rate and respiratory exchange ratio of C. cristata. The observed short-term (0–65 min) rise in metabolic rate, assumed to be associated primarily with the physical costs of nutrient digestion, absorption and excretion, was similar to the calculated mean retention time (66.7±7.8 min; mean ± S.E.M., N=5) of this species. This component of the HIF represented 2.9 % of the food energy ingested by moles fed a single 3.5 g (13.21 kJ) meal of earthworms and 1.4 % of the food energy ingested by moles fed a single 7.5 g (28.09 kJ) meal of earthworms. At all test temperatures, resting metabolic rate typically remained above fasting levels for 1–4 h following ingestion of the high-protein earthworm diet. This protracted rise in metabolic rate, presumably associated with the biochemical costs of amino acid oxidation/gluconeogenesis and ureagenesis, averaged 12.8 % of the metabolizable energy and 8.7 % of the gross energy intake. Despite the potential thermoregulatory benefit, we found no evidence that biochemical HIF substitutes for facultative thermogenesis in star-nosed moles exposed to low air temperatures.