The femoral chordotonal organ (fCO), one of the largest proprioceptive sense organs in the leg of the stick insect, is important for the control of the femur-tibia joint during standing and walking. It consists of a ventral scoloparium with about 80 sensory cells and a dorsal scoloparium with about 420 sensory cells. The present study examines the function of these scoloparia in the femur-tibia control loop. Both scoloparia were stimulated independently and the responses in the extensor tibiae motoneurones were recorded extra-and intracellularly.

The ventral scoloparium, which is the smaller of the two, functions as the transducer of the femur-tibia control loop. Its sensory cells can generate the known resistance reflexes. The dorsal scoloparium serves no function in the femur-tibia control loop and its stimulation elicited no or only minor reactions in the extensor motoneurones. A comparison with other insect leg proprioceptors shows that a morphological subdivision of these organs often indicates a functional specialization.

You do not currently have access to this content.