Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.
Pressure and Temperature Adaptation of Cytosolic Malate Dehydrogenases of Shallowand Deep-Living Marine Invertebrates: Evidence for High Body Temperatures in Hydrothermal Vent Animals
ELIZABETH DAHLHOFF, GEORGE N. SOMERO; Pressure and Temperature Adaptation of Cytosolic Malate Dehydrogenases of Shallowand Deep-Living Marine Invertebrates: Evidence for High Body Temperatures in Hydrothermal Vent Animals. J Exp Biol 1 September 1991; 159 (1): 473–487. doi: https://doi.org/10.1242/jeb.159.1.473
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.