ABSTRACT
This study examines the importance of vascular elasticity to arterial haemodynamics in a poikilothermic vertebrate. Pulsatile blood pressure, flow and vessel diameter were recorded at several locations within the arterial tree of the toad, Bufo marinus. We then determined the dynamic elastic modulus, the pulse wave velocity and the hydraulic impedance characteristics of the aorta. The relatively low heart rate and short arterial tree, and a pulse velocity of about 2.5ms−1, combine to give a transit time for the pressure pulse through aorta that is only 3% of the cardiac cycle. Consequently, wave propagation effects seen in mammals, such as peripheral amplification, distortion and secondary pressure peaks due to reflections, are not apparent. Instead, the aorta acts as a simple Windkessel and inflation by the heart occurs almost simultaneously throughout. Pressure waveforms are nearly identical at proximal and distal locations, and flow pulsatility is reduced progressively through the elastic aorta.