The rapid shell-closing mechanism in articulate (hinged) brachiopods is subject to important hydrodynamic constraints related to expulsion of water from the shell. Fluid forces influence, for example, the speeds of shell closure and the mass flux rates of water from the shell. The principal hydrodynamic forces acting on a shell during rapid closure are (1) inertial reactions, due to the acceleration of water (=acceleration reaction), and (2) water pressure forces which develop as water is expelled from the shell. A generalized hydrodynamic model describes the relative magnitudes of the acceleration and pressure forces as functions of the shell’s angular acceleration, velocity and gape. In general, the acceleration reaction dominates the kinematics of shell closure during the initial phases of a closing event, whereas pressure forces dominate towards the later phases of shell closure. Solutions of the general model predict how variables such as the closing speed and the mass flux of water depend on shell size, initial shell gape and on the magnitude of the closing force. Results indicate that inertial reactions (due to acceleration of water) dominate the mechanics of shell closure in articulate brachiopod taxa.

You do not currently have access to this content.