ABSTRACT
Many behavior patterns of the crayfish involve the positioning of the abdomen by the tonic motor system. Movements and positionings of the swimmerets are coordinated with these abdominal movements. Evidence from extracellular analyses suggested that single interneurons of the abdominal nerve cord could produce motor outputs in both the swimmeret and the abdominal positioning systems. Our intracellular investigation has revealed that many single cells can evoke outputs in both motor systems. Interneurons which produced fictive extension or flexion of the abdomen or inhibition of abdominal movement were also able to modulate a variety of swimmeret behavior including cyclic beating and excitation or inhibition of episodic outputs. Although interneurons were discovered that evoked each of the possible classes of dual-output combinations, those that evoked combinations frequently observed in the freely behaving animal were more common than those that evoked infrequently observed combinations.
Evidence also indicated that abdominal positioning inhibitors are present in greater numbers than previously suspected and that many are closely associated with the swimmeret circuitry. Interneurons with the ability to start and stop swimmeret cyclic outputs with current injections of opposite polarity are proposed to be higher-order cells, and some are shown to have the properties of trigger neurons. It is proposed that most dual-output cells are presynaptic to single-output cells and that groups of related dual-output cells may function together as command elements.