The crustacean stomatogastric ganglion, consisting of about 30 identifiable neurones, produces several distinct patterned outputs governing rhythmic movements of the stomach. This system has become a model for addressing cellular properties and synaptic interactions underlying pattern generation in neural networks (see Selverston and Moulins, 1987). Studies of the system have been limited by the need to use acutely isolated intact or semi-intact ganglion preparations. Also, interesting membrane responses and synaptic interactions occur in the neuropile, but recording from sites other than the somata has been difficult using an intact preparation. Primary culture of dissociated neurones from the ganglion may yield new insights on regional membrane properties and longterm (days) responses to neuromodulators of individual neurones that have regenerated neuritic processes.

This paper presents our culture methods and some observations of outgrowth from neurones that have been dissociated from the stomatogastric ganglia of two evolutionarily diverse species, the Maine lobster...

You do not currently have access to this content.