Issues
-
Cover image
Cover Image
Cover: Immunofluorescent staining of CFTR (green) in the proximal mouse epididymis. In addition to being located in the apical membrane, CFTR is localised at tight junctions, where it uses its PDZ-binding domain to interact with ZO-1. Through this interaction, CFTR mediates the transcription of genes that control differentiation and proliferation, which it modulates by regulating the retention or recruitment of ZO-1 nucleic acid binding protein (ZONAB; also known as YBX3) to tight junctions. Blue, DAPI. See article by Ye Chun Ruan et al. (pp. 4396–4408).
- PDF Icon PDF LinkTable of contents
- PDF Icon PDF LinkIssue info
In This Issue
Commentaries
Short Report
Research Articles
Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network
Articles of Interest in Other COB Journals
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. We have a limited number of spaces left so sign up now! Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4491)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4491)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Cell scientist to watch: Gautam Dey

We interviewed Gautam Dey, who became a group leader at EMBL in Heidelberg, Germany, in 2021. His lab investigates the fundamental organisational principles and evolutionary dynamics of the nuclear compartment across eukaryotes.
Mechanisms of eukaryotic transcription termination at a glance

Check out our latest Cell Science at a Glance article and accompanying poster for an overview of the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.