Cdc42 is a Rho family GTPase known for its central role in cell polarity and cytoskeletal regulation. To understand the role of Cdc42 in polarised secretion from cytotoxic T lymphocytes (CTLs) we used CRISPR/Cas9 gene deletion. While Cdc42-deleted CTLs initially showed reduced secretion for up to two days after CRISPR-mediated deletion, full secretion was rapidly restored and even enhanced while CDC42 protein remained absent. In contrast, chemical inhibition of CDC42 using CASIN consistently decreased secretion in wild-type cells, but had no impact on Cdc42-deleted CTLs, confirming the specificity of this inhibitor. Comparative proteomics and transcriptomics of CTLs after Cdc42-deletion revealed transcriptional changes that could support improved T cell function including compensation via other Rho GTPases. Targeting the promoter region of Cdc42 did not trigger transcriptional adaptation, consistent with a nonsense-mediated decay mechanism of genetic compensation. Our work highlights the importance of taking orthogonal approaches to study protein function, and reveals the remarkable robustness of primary T cells to adapt to loss of an essential gene.

This content is only available via PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Article PDF first page preview

First page of Transcriptional adaptation after deletion of <italic>Cdc42</italic> in primary T cells