Mitochondrial appearance distinctively reflects cellular stress. Hypoxia, one of the most fundamental stressors, drives tumor progression, impacting mitochondrial structure and function. RAS homolog family member A (RHOA), a key regulator of cell motility, is frequently upregulated in response to hypoxia across cancers. However, its behavior under hypoxic condition in gastric cancer (GC) remains largely unexplored. Additionally, investigating the influence of RHOA in cell motility through mitochondrial reshaping is promising. Elevated RHOA level triggered mitochondrial shape-shifts from tubular to stress-associated lasso and donut, correlating with increased reactive oxygen species (ROS). However, RHOA-overexpressing cells experiencing hypoxia exhibited increased migration, despite reduced fission and ROS levels. RHO-associated coiled-coil kinase (ROCK) inhibition impaired mitochondrial shape changes, suggesting its role in mitochondrial remodeling. These results indicate a unique adaptive response to hypoxia, where RHOA upregulation increases motility and modulates mitochondrial plasticity in GC cells. In summary, RHOA-mediated mitochondrial reshaping may serve as a key regulator in tumor cell adaptation and migration in low-oxygen environments.
RHOA-dependent regulation of mitochondrial remodeling and cell motility in hypoxia-exposed gastric epithelial cells
Open Access
These authors contributed equally to the work
- Award Group:
- Funder(s): Department of Atomic Energy, Government of India
- Award Id(s): RIN-4002-SBS
- Funder(s):
- Split-screen
- Views Icon Views Open Menu
- Open the PDF for in another window
-
Article Versions Icon
Versions
- Accepted Manuscript 02 July 2025
- Share Icon Share
-
Tools Icon
Tools
Open Menu
- Search Site
Aranya Pal, Prabin Bawali, Abhisek Brahma, Smruti Ranjan Rana, Rakesh Mohapatra, Debashish Chakraborty, Indrajit Poirah, Supriya Samal, Smaran Banerjee, Duane T. Smoot, Hassan Ashktorab, Asima Bhattacharyya; RHOA-dependent regulation of mitochondrial remodeling and cell motility in hypoxia-exposed gastric epithelial cells. J Cell Sci 2025; jcs.263690. doi: https://doi.org/10.1242/jcs.263690
Download citation file:
Advertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.