The effects of 6-dimethylaminopurine (6-DMAP) (a putative phosphorylation inhibitor) on the state of assembly of microtubules and intermediate filaments have been studied during the first cell cycle of the sea urchin Strongylocentrotus droebachiensis. Changes in the spatial organization of cytoskeletal structures were studied by indirect immunofluorescence with anti-tubulin and anti-IFa antibodies. The rates and patterns of protein phosphorylation in control and treated eggs were also investigated. The transfer of fertilized eggs to 600 microM 6-DMAP within 4 min following insemination inhibits pronuclear migration and syngamy. This also prevents male pronuclear decondensation, while chromatin condensation and nuclear envelope breakdown do not occur in the female pronucleus. Immunolabeling with anti-tubulin antibodies reveals the presence of cortical microtubules as early as 15 min after fertilization in both control and treated eggs. However, no sperm astral microtubules could be detected in the treated eggs. At later stages, from syngamy (40 min) up to nuclear envelope breakdown (90 min), 6-DMAP affects neither cortical microtubule organization nor the state of chromatin condensation but it precludes nuclear envelope breakdown and entry into mitosis. Treatment of the fertilized eggs after nuclear envelope breakdown induces permanent chromosome decondensation and premature disappearance of the mitotic apparatus. This last event involves disruption of the spatial organization of both microtubules and putative intermediate filaments. Quantitative measurements of protein phosphorylation show that 6-DMAP efficiently and reversibly inhibits 32P incorporation into proteins. Qualitative analysis of the autoradiograms of 32P-labeled proteins separated by SDS-PAGE reveals that a major protein band, migrating with an apparent molecular weight of 31 × 10(3)Mr, is specifically dephosphorylated in eggs treated with 6-DMAP. This study suggests that protein phosphorylation is required for sperm aster microtubule growth and migration, but not for cortical microtubule polymerization. It also strengthens the hypothesis that, in sea urchin eggs, putative intermediate filaments are tightly associated with spindle microtubules. Finally, it confirms that inhibiting protein phosphorylation before nuclear envelope breakdown reversibly prevents the entry into mitosis.

This content is only available via PDF.