Eosinophils are proinflammatory cells that are associated with both allergic diseases and parasitic infections. In parasitic infections the eosinophil appears to be protective, but in allergic conditions eosinophil products are damaging and contribute to the tissue pathology of the disease. A particular property of eosinophils is that they can, like macrophages, exist in different states of activation. This has important consequences for the eosinophil in both its protective and pathological roles. In this commentary we concentrate on the positive functions of eosinophil in its potentially protective role against helminth infections.

Helminth infections are commonly associated with eosinophilia. An increase in the number of circulating eosinophils is commonly observed in individuals infected with either Schistosoma mansoni or with S. haematobium. Granulomata from liver biopsy samples containing eggs of S. mansoni are infiltrated with eosinophils (Kephart et al.1988). Baboons infected for 8 months with S. mansoni respond to a challenge by infective cercariae of S. mansoni with an eosinophilic reaction in the epidermis at the site of penetration (Seitz et al. 1987). Experiments in mice have shown that infection with S. mansoni results in peripheral blood eosinophilia (Colley, 1972), eosinophil-containing granulomata around eggs in the liver (Moore et al. 1976) and an eosinophil-rich inflammatory response to the schistosomula (larvae) in the skin at the site of infection in immune animals (von Lichtenberg et al. 1976). Therefore both local and systemic eosinophilia occur in schistosomiasis.

Local eosinophil accumulation can be induced by antigen–antibody complexes (Parish, 1972) and may involve eosinophil chemotactic factors such as PAF, LTB4, histamine and ECF-A (Wardlaw et al. 1986), which are secreted by sensitised mast cells. Both systemic and granulomatous eosinophilia appear to be T lymphocytedependent (Basten and Beeson, 1970). Granuloma formation in mice is prevented by antibody to CD4 lymphocytes. Eosinophil production is controlled by three T lymphocyte products: 11-3, the pluripotent colony-stimulating factor (Yang et al. 1986), GM-CSF, a colony-stimulating factor for granulocytes and macrophages (Metcalf et al. 1986), and 11-5, an eosinophil specific colony-stimulating factor (Sanderson et al. 1985). GM-CSF is secreted additionally by other cell types, including macrophages and endothelial cells. In mice, 11-5 is produced by the Th2 subset of CD4 T cells, while 11-3 and GM-CSF are produced by both Thl and Th2 subsets (Cherwinski et al. 1987). Treatment of mice with antibody to 11-5 abrogates both peripheral blood and granulomatous eosinophilia in mice infected with S. mansoni (Sher et al. 1990). Lymphocytes from acutely infected mice produce large quantities of 11-5 in response to schistosome egg antigen.

Eosinophils may have a protective and/or a pathological role in disease. In allergic respiratory diseases the eosinophil is a proinflammatory cell that releases mediators that sensitise and damage bronchial tissue and induce bronchoconstriction and mucus secretion (Bruijnzeel, 1989). In helminth infections there is evidence that suggests that the eosinophil has a protective function. Eosinophils isolated from peripheral blood kill schistosomula of S. mansoni (Butterworth et al. 1975; Vadas et al. 1979) and S. haematobium (Hagan et al. 1985a) in the presence of immune serum in vitro. S. mansoni killing is mediated by IgGl and IgG3 (Khalife et al. 1989) and by IgE (Capron et al. 1984), and is blocked by IgG4 and by IgM (Khalife et al. 1986). Eggs of S. mansoni and of S. haematobium are also damaged by eosinophils in vitro (James and Colley, 1976; Sher et al. 1980). Purified eosinophil granule proteins MBP and ECP kill schistosomula of S. mansoni in vitro (Ackerman et al. 1985). Extracellular MBP has been localised by immunofluorescence on S. mansoni eggs in liver granuloma (Kephart et al. 1988).

Attempts to correlate eosinophil numbers with resistance to schistosomiasis have given variable results. In a study in the Gambia resistance to infection with S. haematobium was shown to correlate with blood eosinophil counts (Hagan et al. 19855). Rates of reinfection with S. mansoni in a group of Kenyan children cured by chemotherapy were significantly reduced if the children had both detectable antibody and eosinophil counts above 400 mm−3 (Sturrock et al. 1983). However, in a later study it was found that protection from reinfection with S. mansoni did not correlate with peripheral blood eosinophil counts (Butterworth et al. 1985). This latter lack of correlation with the single parameter of eosinophilia may be a reflection of the complexities of the system. Not only is there a requirement for IgGl, IgG3 or IgE for eosinophil-mediated cytotoxicity and blocking by IgM or by IgG4, but also eosinophils can exist in different states of activation.

Peripheral blood eosinophils from different donors differ markedly in their cytotoxic activity and some correlation of activity with eosinophilia has been observed (David et al. 1980; Hagan et al. 1985a). Eosinophils with enhanced cytotoxic activity are described as ‘activated’. They exhibit marked changes in biological activity over unactivated eosinophils, in a manner analagous to macrophage activation.

Eosinophils from children infected with S. haematobium frequently exhibit enhanced antibody-dependent cytotoxic activity (Hagan et al. 19855) and therefore appear to be activated. Eosinophils from donors of high activity mediate IgGl-, IgG2- or IgG3-dependent killing of schistosomula of S. mansoni. Eosinophils from donors of low activity require prior activation; the cytotoxic activity being mediated by IgGl and IgG3, but inhibited by IgG2 (Khalife et al 1989). A population of eosinophils of low density has been isolated from patients with idiopathic hypereosinophilia (HES) (Bass et al. 1980), and also from individuals with filarial infections (Khalife et al. 1986). They differ from normal-density eosinophils in mediating IgE-instead of IgG-dependent cytotoxicity to schistosomula of S. mansoni (Capron et al. 1984). They have a reduced content of granule enzymes (Winqvist et al. 1982; Khalife et al. 1986) and reduced ability to produce toxic metabolites of oxygen (Prin et al. 1984). Morphologically HES low density eosinophils have a normal spherical shape but small granules (Peters et al. 1988), while activated normal-density eosinophils are distorted in shape, with extensive lamellipodia but with normal granules (Butterworth and Thome, 1988).

Enhancement of IgG-mediated cytotoxic activity of normal-density eosinophils can be achieved in vitro by incubation with soluble secretion products from mononuclear cells (Veith and Butterworth, 1983; Dessein et al. 1984) or with serum (Khalife et al. 1989) from patients with moderate eosinophilia. A number of components have now been identified in the secretion products of both lymphocytes and monocytes that possess the ability to enhance eosinophil cytotoxic activity. Three groups of activating factors have been described: colony stimulating factors, chemotaxins and activating factors. While all these factors enhance eosinophil cytotoxic activity, they differ somewhat in the spectrum of properties that they enhance (Table 1).

Table 1.

Enhancement of eosinophil functions by activating factors

Enhancement of eosinophil functions by activating factors
Enhancement of eosinophil functions by activating factors

The colony-stimulating factors IL-3, GM-CSF and IL-5 not only induce eosinophilopoiesis but also enhance cytotoxic activity of mature eosinophils (Dessein et al. 1982; Sanderson et al. 1985; Lopez et al. 1987). Properties of eosinophils that are enhanced by the colony stimulating factors are: survival in culture (Owen et al. 1987), adherence to plasma-coated glass, plastic and endothelial cells (Walsh et al. 1990a) and surface expression of the α-chain of the adherence molecule CR3 (CDllb) (Thome et al. 1990). Degranulation is increased as shown by conversion of ECP from the stored to the secreted form (Tai and Spry, 1990) and increased IgA-induced release of EDN (Fujisawa et al. 1990). Production of LTC4 after triggering with the Ca ionophore A23187 is increased (Rothenburg et al. 1988; Silberstein et al 1986) as is production of the toxic reduced oxygen metabolite superoxide (Vadas et al. 1983; Lopez et al. 1987; Lopez et al. 1988). Activation of eosinophils by colony-stimulating factors is associated with a change in shape and some loss of cell density (Lopez et al. 1986).

Five of the numerous substances known to be chemotactic for eosinophils have also been shown to exhibit eosinophil-activating activity. These are the lipid mediator PAF (Moqbel et al. 1990a), the tetrapeptides ECF-A, histamine (Anwar et al. 1980), LTB4 (Moqbel et al. 1983) and a basic glycoprotein HILDA from alloreactive T cells stimulated with specific antigen and 11-2 (Moreau et al. 1987; Godard et al. 1988). PAF is the most potent of the chemotactic factors. It enhances both IgG-mediated (Walsh et al. 19905), and IgE-mediated (Moqbel et al. 1990a) killing of schistosomula of S. mansoni. It increases adherence of eosinophils to cultured endothelial cells (Kimani et al. 1988; Lamas et al. 1988) and to plasma-coated glass (Walsh et al. 1990a), producing flattened elongated cells of reduced density (Yukawa et al. 1989). Expression of both CDllb and the IgE receptor CD23 are enhanced on the cell surface (Thome et al. 1990; Tanaka et al. 1989). PAF induces rapid release of granule enzymes and increases production of superoxide (Kroegel et al. 1989). It increases the production of LTC4 both spontaneously and after triggering with Ca ionophore, opsonised zymosan or IgE-coated schistosomula (Tamura et al. 1988; Moqbel et al. 19905).

Three factors have been described that act only on mature cells and are neither eosinophil colony-stimulating factors nor chemotaxins. These factors are TNFa (Silberstein and David, 1986), EAF (Thome et al. 1986) and ECEF (Lenzi et al. 1985). They can be separated by gel filtration and by anion-exchange chromatography. TNF has a molecular weight of 17×103 and pl5.3; EAF has molecular weight 40×103 and pl 4.4; ECEF has monomer molecular weight lOxlO3 and pl 3.8 (Silberstein and David, 1987). TNF enhances adherence to endothelial cells and to gelatinised plastics (Lamas et al. 1988) and increases expression of the surface receptor CDllb (Thome et al. 1990). TNF has little effect on either degranulation or production of superoxide (Whitcomb et al. 1989) or A23187-induced production of LTC4 (Silberstein and David, 1986). EAF increases IgG-but not IgE-dependent killing of schistosomula and adherence to IgG-coated schistosomula (Veith et al. 1984). It increases expression of the surface receptor molecule CDllb (Thome et al. 1990). Both EAF and ECEF enhance eosinophil degranulation (Thome et al. 1985; Caulfield et al. 1985), spontaneous production of superoxide (Pincus et al. 1984; Thome et al. 1985) and triggered production of LTC4 (Dessein et al. 1986; Elsas et al. 1987; Fitzharris étal. 1986).

While most investigations of the phenomenon of eosinophil activation have concentrated on identification of individual mediators it is likely that in vivo several factors will be present together at a particular site. It is particularly interesting, therefore, that several of the factors described above act synergistically. TNF, EAF and GM-CSF act synergistically to increase the expression of CDllb (Thome, Richardson and Mazza, unpublished results). In mice GM-CSF and B-5 act synergistically to stimulate the chemokinesis of eosinophils. The chemo-kinetic activity that is secreted by spleen cells from S. mansoni infected animals stimulated with soluble egg antigen (Colley, 1972) can only be neutralised by a combination of antibodies to GM-CSF and 11-5 (Secor et al. 1990).

A further complication in the assessment of the role of activating factors in vivo is the presence of endogenous inhibitors. Silberstein and co-workers (1990) have identified a protein (molecular weight 80–100×103) in sera of donors of eosinophils that are unresponsive to TNF. This protein, ECI, inhibits both TNF- and GM-CSF-enhanced cytotoxicity. It inhibits TNF-enhanced adherence to plastic, but has no effect on PMA-induced production of H2O2. It is of interest that ECI was found in all serum samples, but was in a latent form in some individuals and was detectable only after purification.

11-4 acts as an inhibitor of eosinophil function. It inhibits IgG-dependent killing of schistosomula, IgG-mediated degranulation and expression of IgG receptors (Baskar et al. 1990). It is of interest that IgE-dependent functions were unaffected, since 11-4 induces B-cells to secrete IgE in a process that is enhanced by 11-5 (Pene et al. 1988).

Lymphocytes, monocytes, mast cells and endothelial cells all appear to play a role in eosinophil activation (Table 2). CD4 lymphocytes secrete the colony-stimulating factors 3, GM-CSF and 11-5 in response to antigenic stimulation.

Table 2.

Production of eosinophil-activating factors by different cell types

Production of eosinophil-activating factors by different cell types
Production of eosinophil-activating factors by different cell types

In addition the lymphocytes have an indirect role, since they produce 11-2, which enhances H-5 production, and γ-IFN, which enhances TNF production (Philip and Epstein, 1986) and cytotoxic activity. Monocytes secrete activating factors EAF, ECEF and TNF spontaneously or in response to antigens or mitogens. Monocyte products that play an indirect role in eosinophil activation are II-1, which enhances GM-CSF production, and TNF, which enhances production of GM-CSF and production of TNF itself. Alveolar macrophages from asthmatics secrete GMCSF and, in the presence of LPS, TNF (Howell et al. 1989). Mast cells respond to antigenic stimuli with production of the colony-stimulating factors (Broudy et al. 1986; Munker et al. 1986) and also production of the lipid mediator PAF. Endothelial cells secrete GM-CSF and PAF (Braquet et al. 1989). Since adherence of eosinophils to endothelial cells is enhanced by GM-CSF and by PAF (Walsh et al. 1990a) local production of eosinophil-activating factors could be highly significant.

Eosinophil activation in vitro has been studied extensively. Colony-stimulating factors from lymphocytes, activating factors from monocytes and the potent chemotactic factor PAF from mast cells and endothelial cells selectively enhance properties of eosinophils that contribute to their function as cytotoxic cells. The evidence that activated eosinophils play a protective role in vivo in human schistosomiasis is only now beginning to emerge. Eosinophils from a group of children infected with S. haematobium were tested for their cytotoxic activity (Hagan et al. 19856). Eosinophils from subjects with high peripheral blood eosinophil counts were more active in killing S. haematobium schistosomula than were eosinophils from subjects with low eosinophil counts. Children with high eosinophil counts were less likely to be reinfected after treatment than children with low eosinophil counts.

Blood mononuclear cells from children infected with S. mansoni secrete eosinophil activating activity when incubated in vitro without further stimulation (Butterworth et al. 1985). Kern and co-workers (1987) described an eosinophil colony-stimulating factor resembling IL-5 in serum samples from patients with helminth infections. In recent work we have demonstrated that eosinophil activating activity is present in serum samples from children infected with S. mansoni (Khalife et al. 1989; Mazza et al. 1990). One component of the active sera is IL-5, but the levels are too low to account for the total eosinophil activating activity present. Further work is required to identify the other activating factors and to determine their importance in resistance to schistosomiasis.

The authors acknowledge with thanks the support of the EEC and the National Asthma Campaign. They are grateful to Dr Anthony Butterworth and to Dr David Dunne for their helpful comments on this manuscript.

Ackerman
,
S. J.
,
Gleich
,
G. J.
,
Loegbrino
,
D. A.
,
Richardson
,
B. A.
and
Butterworth
,
A. E.
(
1985
).
Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni
.
Am J. trop. Med. Hyg
34
,
735
745
.
Anwar
,
A. R. E.
,
McKean
,
J. R.
,
Smithers
,
S. R.
and
Kay
,
A. B.
(
1980
).
Human eosinophil- and neutrophil-mediated killing of schistosomula of Schistosoma mansoni in vitro, I. Enhancement of complement-dependent damage by mast cell-derived mediators and formyl methionyl peptides
.
J. Immun
.
124
,
1122
1129
.
Baskar
,
P.
,
Silberstein
,
D. S
and
Pincus
,
S. H.
(
1990
).
Inhibition of IgG-triggered human eosinophil function by IL-4
.
J. Immun
.
144
,
2321
2326
.
Bass
,
D. A.
,
Grover
,
W H.
,
Lewis
,
J C.
,
Dechatelet
,
L. R.
and
McCall
,
C. E.
(
1980
).
Comparison of human eosinophils from normals and patients with eosinophilia
.
J. din. Invest
66
,
1265
1273
.
Basten
,
A.
and
Beeson
,
P. B.
(
1970
).
Mechanism of eosinophilia. H. Role of the lymphocyte J exp
.
Med
.
131
,
1288
1305
.
Braquet
,
P.
,
Hosford
,
D.
,
Braquet
,
M.
,
Bourgain
,
R.
and
Bussolino
,
F.
(
1989
).
Role of cytokines and platelet-activating factor in microvascular immune injury
.
Ini. Archs Allergy appl. Immun
.
88
,
88
100
.
Broudy
,
V. C.
,
Kaushansky
,
K.
,
Secal
,
G. S.
,
Harlan
,
J. M.
and
Adamson
,
J. W.
(
1986
).
Tumor necrosis factor type a stimulates human endothelial cells to produce granulocyte/macrophage colonystimulating factor
.
Proc. natn. Acad. Sci. U.S.A
.
83
,
7467
7471
Bruunzeel
,
P. L. B.
(
1989
).
Contribution of eosinophil-derived mediators in asthma
.
Int. Archs Allergy appl. Immun
.
90
,
57
63
.
Butterworth
,
A. E.
,
Capron
,
M.
,
Cordinglby
,
J. S
,
Dalton
,
P. R.
,
Dunne
,
D. W.
,
Kariuki
,
G.
,
Gobch
,
D.
,
Mugambi
,
M.
,
Ouma
,
J. H.
,
Prentice
,
M. A.
,
Richardson
,
B. A.
,
Arap Siogkok
,
T. K.
,
Sturrock
,
R. F.
and
Taylor
,
D W.
(
1985
).
Immunity after treatment of human schistosomiasis mansoni. n. Identification of resistant individuals and analysis of their immune responses
.
Trans. R. Soc. trop. Med. Hyg
.
79
,
393
408
.
Butterworth
,
A. E.
,
Sturrock
,
R. F.
,
Houba
,
V.
,
Mahmoud
,
A. A.
,
Shbr
,
A.
and
Rees
,
P. H.
(
1975
).
Eosinophils as mediators of antibody-dependent damage to schistosomula
.
Nature
256
,
727
729
.
Butterworth
,
A. E.
and
Thorne
,
K. J. I.
(
1988
).
Eosinophils in parasitic diseases: properties of an eosinophil activating factor (EAF)
.
EOS J. Immun. Immunopharmac
.
8
,
33
41
.
Capron
,
M.
,
Spibgblberg
,
H. L.
,
Prin
,
L.
,
Bbnnich
,
H.
,
Butterworth
,
A. E.
,
Pibrcb
,
R. J.
,
Ouaissi
,
M. A.
and
Capron
,
A.
(
1984
).
Role of IgE receptors in effector function of human eosinophils
.
J. Immun
.
132
,
462
468
.
Caulfield
,
J. P.
,
Lbnzi
,
H. L.
,
Elsas
,
P.
and
Dessein
,
A. J.
(
1985
).
Ultrastructure of the attack of eosinophils stimulated by blood mononuclear cell products on schistosomula of Schistosoma mansoni
.
Ani. J. Path
.
120
,
380
390
.
Cherwinski
,
H. C.
,
Schumacher
,
J. H.
,
Brown
,
K. D.
and
Mosmann
,
T. R.
(
1987
).
Two types of mouse helper T cell clone: 3. Further differences in lymphokine synthesis between TH1 and TH2 clones revealed by RNA hybridisation, functionally monospecific bioassays and monoclonal antibodies
.
J. exp. Med
.
166
,
1229
1244
Colley
,
D. G.
(
1972
).
Schistosoma mansoni: eosinophilia and the development of lymphocyte blastogenesis in response to soluble egg antigen in inbred mice
.
Expl Parasii
.
32
,
520
526
.
David
,
J. R.
,
Vadas
,
M. A.
,
Butterworth
,
A. E.
,
De Brito
,
P A.
,
Carvalho
,
E M.
,
David
,
R. A.
,
Bina
,
J. C.
and
Andrade
,
Z. A.
(
1980
).
Enhanced helminthotoxic capacity of eosinophils from patients with eosinophilia
.
N. Engl. J. Med
.
303
,
1147
1152
.
Dessbin
,
A. J.
,
Lee
,
T. H.
,
Elsas
,
P
,
Raválese
,
J.
,
Silberstein
,
D.
,
David
,
J. R.
,
Austen
,
K. F.
and
Lewis
,
R. A.
(
1986
).
Enhancement by monokines of leukotriene generation by human eosinophils and neutrophils stimulated with calcium ionophore A23187
J Immun
136
,
3829
3838
.
Dessein
,
A. J.
,
Lenzi
,
H. L.
,
Bina
,
J. C.
,
Carvalho
,
E. M
,
Weiser
,
W. Y.
,
Andradb
,
Z. A.
and
David
,
J. R.
(
1984
).
Modulation of eosinophil cytotoxicity by blood mononuclear cells from healthy subjects and patients with chronic schistosomiasis mansoni
.
Cell Immun
85
,
100
113
Dessbin
,
A. J.
,
Vadas
,
M. A.
,
Nicola
,
N. A.
,
Metcalf
,
D.
and
David
,
J. R.
(
1982
).
Enhancement of human blood eosinophil cytotoxicity by semi-purified eosinophil colony-stimulating factorfs)
.
J. exp Med
.
156
,
90
103
.
Elsas
,
P.
,
Lee
,
T. H.
,
Lenzi
,
H. L.
and
Dessein
,
A. J.
(
1987
).
Monocytes activate eosinophils for enhanced helminthotoxicity and increased generation of leukotriene C4
.
Annis Inst. Pasteur Immun
.
138
,
97
116
.
Fitzhabris
,
P.
,
Moqbel
,
R.
,
Thornb
,
K. J.
,
Richardson
,
B. A.
,
Hartnell
,
A.
,
Cromwbll
,
O.
,
Butterworth
,
A. E.
and
Kay
,
A. B.
(
1986
).
The effects of eosinophil activating factor on IgG-dependent sulphidopeptide leukotriene generation by human eosinophils
.
Clin, exp. Immun
.
66
,
673
680
.
Fujibawa
,
T.
,
Abu-Ghazaleh
,
R.
,
Kita
,
H.
,
Sanderson
,
C. J.
and
Gleich
,
G. J.
(
1990
).
Regulatory effect of cytokines on eosinophil degranulation
.
J. Immun
.
144
,
642
646
.
Godard
,
A.
,
Gascan
,
H.
,
Naulet
,
J.
,
Peyrat
,
M. A.
,
Yannick
,
J.
,
Soulilou
,
J. P.
and
Moreau
,
J. F.
(
1988
).
Biochemical characterisation and purification of HILDA, a human lymphokine active on eosinophils and bone marrow cells
.
Blood
71
,
1618
1623
.
Hagan
,
P.
,
Moore
,
P. J.
,
Adjukiewicz
,
A. B.
,
Greenwood
,
B. M.
and
Wilkins
,
H. A.
(
1985a
).
In vitro antibody-dependent killing of schistosomula of Schistosoma haematobium by human eosinophils
.
Parasite Immun
.
7
,
617
624
.
Hagan
,
P.
,
Wilkins
,
H. A.
,
Blumenthal
,
U. J.
,
Hayes
,
R. J.
and
Greenwood
,
B. M.
(
1985b
).
Eosinophilia and resistance to Schistosoma haematobium in man
.
Parasite Immun
.
7
,
625
632
.
Howell
,
C. J.
,
Pujol
,
J. L.
,
Crea
,
A. E. G.
,
Davidson
,
R.
,
Gearing
,
A. J. H.
,
Godard
,
P.
and
Lee
,
T. H.
(
1989
).
Identification of an alveolar macrophage-derived activity in bronchial asthma that enhances leukotriene C4 generation by human eosinophils stimulated by ionophore A23187 as a granulocyte-macrophage colony-stimulating factor
.
Am. Rev resp. Dis
.
140
,
1340
1347
.
James
,
S. L.
and
Colley
,
D. G.
(
1976
).
Eosinophil-mediated destruction of Schistosoma mansoni eggs
.
J. Reticuloen. Soc
.
20
,
359
374
.
Kephart
,
G. M.
,
Andrade
,
Z. A.
and
Gleich
,
G. J.
(
1988
).
Localisation of eosinophil major basic protein onto eggs of Schistosoma mansoni in human pathologic tissue
.
Am. J. Path
.
133
,
389
396
.
Kern
,
P.
,
Horstmann
,
R. D.
and
Dietrich
,
M.
(
1987
).
Eosinophil production in human bone-marrow cultures induced by 80-85 kDa serum component(s) of patients with eosinophilia
Br. J. Haemat
.
66
,
165
172
.
Khalife
,
J.
,
Capron
,
M.
,
Cbsbron
,
J. Y.
,
Tai
,
P. C.
,
Taelman
,
H.
,
Prin
,
L.
and
Capron
,
A.
(
1986
).
Role of specific IgE antibodies in peroxidase (EPO) release from human eosinophils
.
J. Immun
.
137
,
1659
1664
.
Khalife
,
J.
,
Dunne
,
D. W.
,
Richardson
,
B. A.
,
Mazza
,
G.
,
Thorne
,
K. J. I.
,
Capron
,
A.
and
Butterworth
,
A. E.
(
1989
).
Functional role of human IgG subclasses in eosinophil-mediated killing of schistosomula of Schistosoma mansoni
.
J. Immun
.
142
,
4422
4427
.
Kimani
,
G.
,
Tonnesen
,
M. G.
and
Henson
,
P M.
(
1988
).
Stimulation of eosinophil adherence to human vascular endothelial cells in vitro by platelet activating factor
.
J. Immun
.
140
,
3161
3166
.
Kroegel
,
C.
,
Yukawa
,
T.
,
Dent
,
G.
,
Venge
,
P.
,
Chung
,
K. F.
and
Barnes
,
P. J.
(
1989
).
Stimulation of degranulation from human eosinophils by platelet activating factor
.
J. Immun
.
142
,
3518
3526
.
Lamas
,
A M.
,
Mulroney
,
C. M.
and
Schleimer
,
R. P.
(
1988
)
Studies on the adhesive interaction between purified human eosinophils and cultured vascular endothelial cells
.
J. Immun
.
140
,
1500
1505
.
Lenzi
,
H. L.
,
Mednis
,
A. D.
and
Dessein
,
A. J.
(
1985
).
Activation of human eosinophils by monkines and lymphokines: source and biochemical characteristics of the eosinophil cytotoxicity-enhancing activity produced by blood mononuclear cells
.
Cell. Immun
.
94
,
333
346
.
Lopez
,
A. F.
,
Sanderson
,
C. J.
,
Gamble
,
J. R.
,
Campbell
,
H. D.
and
Young
,
I. G.
(
1988
).
Recombinant human interleukin 5 is a selective activator of human eosinophil function
.
J. exp. Med
.
167
,
219
224
.
Lopez
,
A. F.
,
To
,
L. B.
,
Yang
,
Y. C.
,
Gamble
,
J. R.
,
Shannon
,
M. F.
,
Burns
,
G. F.
,
Dyson
,
P. G.
,
Juttner
,
C. A.
,
Clark
,
S.
and
Vadas
,
M. A.
(
1987
).
Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3
.
Proc. natn. Acad. Sci. U.S.A
.
81
,
1818
1821
.
Lopez
,
A. F.
,
Williamson
,
D. J.
,
Gamble
,
J. R
,
Begley
,
C. G.
,
Harlan
,
J. M.
,
Klebanoff
,
S. J.
,
Waltersdorph
,
A.
,
Wong
,
G.
,
Clark
,
S. C.
and
Vadas
,
M. A.
(
1986
).
Recombinant human granulocytemacrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival
.
J. clin. Invest
.
78
,
1220
1228
.
Mazza
,
G.
,
Thorne
,
K J. I.
,
Richardson
,
B. A.
and
Butterworth
,
A. E.
(
1990
).
The presence of eosinophil activating mediators in sera from Schistosoma mansoni infected individuals
.
Bull. Soc. Française de Parasitologie
8
,
631
.
Metcalf
,
D.
,
Begley
,
C. G.
,
Jophnson
,
N. A.
,
Vadas
,
M. A.
,
Lopez
,
A. F.
,
Williamson
,
D. J.
,
Wong
,
G. G.
,
Clark
,
S. C.
and
Wang
,
E A
(
1986
).
Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor
.
Blood
67
,
37
45
.
Moore
,
D. L.
,
Grove
,
D. I.
and
Warren
,
K. S.
(
1976
).
The Schistosoma mansoni egg granuloma: quantitation of cell populations
.
J. Path
.
121
,
41
50
.
Moqbel
,
R.
,
Macdonald
,
A. J.
,
Cromwell
,
O.
and
Kay
,
A. B
(
1990b
).
Release of leukotriene C4 (LTC4) from human eosinophils following adherence to IgE- and IgG-coated schistosomula of Schistosoma mansoni
.
Immunology
69
,
435
442
.
Moqbel
,
R.
,
Sabs Kuhn
,
S. P.
,
Goetzl
,
E. J.
and
Kay
,
A. B.
(
1983
).
Enhancement of neutrophil and eosinophil mediated complementdependent killing of schistosomula of Schistosoma mansoni m vitro by leukotriene B4 Clin
.
Exp. Immun
.
52
,
519
527
.
Moqbel
,
R.
,
Walsh
,
G. M
,
Nagakura
,
T
,
Macdonald
,
A. J
,
Wardlaw
,
A. J.
,
Iikura
,
Y.
and
Kay
,
A. B.
(
1990a
).
The effect of platelet activating factor on IgE binding to, and IgE-dependent biological properties of human eosinophils
.
Immunology
70
,
251
257
.
Moreau
,
J. F.
,
Bonneville
,
M.
,
Godard
,
A.
,
Gascan
,
H.
,
Gruart
,
V
,
Moore
,
M. A.
and
Soulillou
,
J. P.
(
1987
).
Characterization of a factor produced by human T cell clones exhibiting eosinophilactivating and burst-promoting activities
.
J. Immun
.
138
,
3844
3849
Munker
,
R
,
Gasson
,
J
,
Ogawa
,
M.
and
Koeffler
,
H. P
(
1986
).
Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor
Nature
323
,
79
82
.
Owen
,
W. F.
,
Rothenberg
,
M. E.
,
Silberstein
,
D. S.
,
Gasson
,
J. C.
,
Stevens
,
R. L.
,
Austen
,
K. F.
and
Soberman
,
R. J.
(
1987
).
Regulation of human eosinophil viability, density, and function by granulocyte-macrophage colony-stimulating factor in the presence of 3T3 fibroblasts
.
J. exp. Med
.
166
,
129
141
.
Parish
,
W. E.
(
1972
).
Eosinophilia. II. Cutaneous eosinophilia in guineapigs mediated by passive anaphylaxis with IgGl or reagin and antigen-antibody complexes; its relation to neutrophils and to mast cells
.
Immun
.
23
,
19
34
.
Pene
,
J.
,
Rousset
,
F.
,
Briere
,
F.
,
Chretien
,
I.
,
Wideman
,
J.
,
Bonnefoy
,
J. Y.
and
De Vries
,
J. E.
(
1988
).
Interleukin 5 enhances interleukin 4 induced IgE production by normal human B cells. The role of soluble CD23 antigen
.
Eur. J. Immun
18
,
929
935
Peters
,
M. S.
,
Gleich
,
G. J.
,
Dunnette
,
S. L.
and
Fukuda
,
T.
(
1988
).
Ultrastructural study of eosinophils from patients with the hyperéosinophilie syndrome: a morphological basis of hypodense eosinophils
.
Blood
71
,
780
785
.
Philip
,
R.
and
Epstein
,
L. B.
(
1986
).
Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, y-interferon and interleukin-1
.
Nature
323
,
86
89
.
Pincus
,
S. H.
,
Dessein
,
A.
,
Lenzi
,
H.
,
Vadas
,
M. A.
and
David
,
J.
(
1984
).
Eosinophil-mediated killing of schistosomula of Schistosoma mansoni: oxidative requirement for enhancement by eosinophil colony stimulating factor (CSF-alpha) and supernatants with eosinophil cytotoxicity enhancing activity (E-CEA)
.
Cell Immun
.
87
,
424
433
.
Prin
,
L.
,
Charon
,
J.
,
Capron
,
M.
,
Gosset
,
P.
,
Taelman
,
H.
,
Tonnel
,
A. B.
and
Capron
,
A.
(
1984
).
Heterogeneity of human eosinophils. II. Variability of respiratory burst activity related to cell density
.
Clin, expl Immun
.
57
,
735
742
.
Rothenberg
,
M. E.
,
Owen
,
W. F.
,
Silberstein
,
D. S.
,
Woods
,
J.
,
Soberman
,
R. J.
,
Austen
,
K. F.
and
Stevens
,
R. L.
(
1988
).
Human eosinophils have prolonged survival, enhanced functional properties and become hyupodense when exposed to human interleukin 3
.
J. clin Invest
81
,
1986
1992
.
Sanderson
,
C. J.
,
Warren
,
D. J.
and
Strath
,
M.
(
1985
).
Identification of a lymphokine that stimulates eosinophil differentiation in vitro: its relationship to interleukin 3, and functional properties of eosinophils produced in cultures
.
J. exp. Med
.
162
,
60
74
Secor
,
W. E.
,
Stewart
,
S. J.
and
Colley
,
D. G.
(
1990
).
Eosinophils and immune mechanisms. VI. The synergistic combination of granulocytemacrophage colony-stimulating factor and 11-5 accounts for eosinophilstimulation promoter activity in Schistosoma mansoni-infecteà mice
.
J. Immun
.
144
,
1484
1489
Seitz
,
H. M.
,
Cottrell
,
B. J.
and
Sturrock
,
R. F.
(
1987
).
A histological study of akin reactions of baboons to Schistosoma mansoni schistosomula Trans R
.
Soc. trop. Med. Hyg
.
81
,
385
390
.
Sher
,
A.
,
Coffman
,
R. L.
,
Hieny
,
S.
,
Scott
,
P.
and
Cheever
,
A. W.
(
1990
).
Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni Proc
.
natn. Acad. Sci. U.S.A
.
87
,
61
65
.
Sher
,
R.
,
Wadee
,
A. A.
,
Mason
,
P R.
and
Fripp
,
P. J.
(
1980
).
Cytotoxic effect of human eosinophils and eosinophil lysate on Schistosoma haematobium ova S African J
.
Sci
.
76
,
266
268
.
Silberstein
,
D. S.
and
David
,
J R
(
1986
).
Tumour necrosis factor enhances eosinophil toxicity to Schistosoma mansoni larvae
.
Proc, natn. Acad. Sci. U.S.A
.
83
,
1055
1059
.
Silberstein
,
D. S.
and
David
,
J. R.
(
1987
).
The regulation of human eosinophil function by cytokines
.
Immun. Today
8
,
380
385
.
Silberstein
,
D. S
,
Minkoff
,
M. S.
,
Creasey
,
A. A.
and
David
,
J R.
(
1990
).
A serum factor that suppresses the cytotoxic function of cytokine-stimulated human eosinophils
.
J. exp. Med
.
171
,
681
693
Silberstein
,
D. S.
,
Owen
,
W F
,
Gasson
,
J. C.
,
Dipersio
,
J. F.
,
Golds
,
D. W.
,
Bina
,
J. C.
,
Soberman
,
R.
,
Austen
,
K. F.
and
David
,
J. R.
(
1986
).
Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocytemacrophage colony-stimulating factor
.
J. Immun
.
137
,
3290
3294
.
Sturrock
,
R. F.
,
Kimani
,
R.
,
Cottrell
,
B. J.
,
Butterworth
,
A. E
,
Seitz
,
H. M.
,
Siongok
,
T. K.
and
Houba
,
V.
(
1983
).
Observations on possible immunity to reinfection among Kenyan schoolchildren after treatment for Schistosoma mansoni
.
Trans. R. Soc. trop. Med. Hyg
.
77
,
363
371
.
Tai
,
P. C.
and
Spry
,
C. J. F.
(
1990
).
The effects of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 on the secretory capacity of human blood eosinophils
.
Clin, expl Immun
.
80
,
426
434
.
Tamura
,
N.
,
Aorawal
,
D. K.
and
Townley
,
R. G
(
1988
).
Leukotriene C4 production from human eosinophils in vitro. Role of eosinophil chemotactic factors on eosinophil activation
.
J. Immun
.
141
,
4291
4297
.
Tanaka
,
M.
,
Lbb
,
K.
,
Todoi
,
J.
,
Saito
,
H.
,
Iwai
,
Y.
,
Kim
,
K. M.
,
Morita
,
M.
,
Mayumi
,
M.
and
Mikawa
,
H.
(
1989
).
Regulation of Fee receptor 2 (CD23) expression on a human eosinophilic cell line U937 by transforming growth factor /I
.
Cell Immun
.
122
,
96
107
Thornb
,
K. J. I.
,
Richardson
,
B. A.
,
Mazza
,
G.
and
Buttbrworth
,
A. E.
(
1990
).
A new method for measuring eosinophil activating factors, based on the increased expression of CR3 rr-chain (CDllb) on the surface of activated eosinophils
.
J. immun. Meth
.
133
,
47
54
.
Thornb
,
K. J. I.
,
Richardson
,
B. A.
,
Tavbrne
,
J.
,
Williamson
,
D. J.
,
Vadas
,
M. A.
and
Buttbrworth
,
A. E.
(
1986
).
A comparison of eosinophil-activating factor (EAF) with other monokines and lymphokines
.
Eur. J. Immun
.
16
,
1143
1149
.
Thornb
,
K. J. I
,
Richardson
,
B. A.
,
Veith
,
M. C.
,
Tai
,
P C.
,
Spry
,
C. J. F.
and
Buttbrworth
,
A. E.
(
1985
).
Partial purification and biological properties of an eosinophil-activating factor
.
Eur. J. Immun
.
15
,
1083
1091
.
Vadas
,
M. A.
,
David
,
J. R.
,
Buttbrworth
,
A.
,
Pisani
,
N. T.
and
Sionqok
,
T. A.
(
1979
).
A new method for the purification of human eosinophils and neutrophils, and a comparison of the ability of these cells to damage schistosomula of Schistosoma mansoni
.
J. Immun
.
122
,
1228
1236
Vadas
,
M. A.
,
Varigos
,
G.
,
Nicola
,
N.
,
Pincus
,
S.
,
Dessein
,
A.
,
Metcalf
,
D.
and
Battye
,
F. L.
(
1983
).
Eosinophil activation by colony-stimulating factor in man. metabolic effects and analysis by flow cytometry
.
Blood
61
,
1232
1241
.
Vbith
,
M. C.
and
Butterworth
,
A. E.
(
1983
).
Enhancement of human eosinophil-mediated killing of Schistosoma mansoni larvae by mononuclear cell products in vitro
.
J. exp. Med
.
157
,
1828
1843
.
Vbith
,
M. C.
,
Taylor
,
D. W.
,
Thorne
,
K.
,
Richardson
,
B. A
and
Buttbrworth
,
A. E.
(
1984
).
Studies on the enhancement of human eosinophil function by mononuclear cell products in vitro
.
Clin, expl Immun
.
58
,
603
610
.
Von Lichtbnbbrc
,
F.
,
Shbr
,
A.
,
Gibbons
,
N.
and
Doughty
,
B. L.
(
1976
).
Eosinophil-enriched inflammatory response to schistosomula in the skin of mice immune to Schistosoma mansoni
.
Am. J. Path
.
84
,
479
500
.
Walsh
,
G. M.
,
Hartnbll
,
A.
,
Moqbel
,
R.
,
Cromwell
,
O.
,
Nagy
,
L.
,
Bradlby
,
B.
,
Furitsu
,
T.
,
Ishizaka
,
T.
and
Kay
,
A. B.
(
1990a
).
Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells
.
Blood
76
,
105
111
.
Walsh
,
G. M.
,
Habtnbll
,
A.
,
Wardlaw
,
A. J.
,
Kurihara
,
K.
,
Sanderson
,
C J
and
Kay
,
A. B.
(
1990b
).
IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leukocyte integrin (CDll/18)-dependent manner
.
Immunology
71
,
258
265
.
Wardlaw
,
A. J.
,
Moqbel
,
R.
,
Cromwell
,
O.
and
Kay
,
A. B.
(
1986
).
Platelet-activating factor: a potent chemotactic and chemokinetic factor for human eosinophils
.
J. din. Invest
.
78
,
1701
1706
.
Whitcomb
,
E. A.
,
Weslobk
,
J. H.
and
Pincus
,
S. H.
(
1989
).
Modulation of human peripheral blood eosinophil function by tumor necrosis factor alpha
.
Ini. Archs Allergy appl. Immun
.
89
,
250
255
.
Winqvist
,
I.
,
Olofsson
,
T.
,
Olson
,
I.
,
Pbrsson
,
A. M.
and
Hallbbrg
,
T.
(
1982
).
Altered density, metabolism and surface receptors of eosinophils in eosinophilia
.
Immunology
47
,
531
539
.
Yang
,
Y. C.
,
Ciarlbtto
,
A. B.
,
Temple
,
P. A.
,
Chung
,
M. P.
,
Kovack
,
S.
,
Witek-Gianotti
,
J. A.
,
Leary
,
A. C.
,
Krttz
,
R.
,
Donahue
,
R. E.
,
Wong
,
G. G.
and
Clark
,
S. C.
(
1986
).
Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3
.
Cell
47
,
3
10
.
Yukawa
,
T.
,
Krobgbl
,
C.
,
Evans
,
P.
,
Fukuda
,
T.
,
Chung
,
K. F.
and
Barnes
,
P. J.
(
1989
).
Density heterogeneity of eosinophil leukocytes: induction of hypodense eosinophils by platelet activating factor
.
Immunology
68
,
140
143
.