Pericytes isolated from the bovine retinal microvasculature retain characteristic features of their in vivo counterparts, such as the presence of glycogen deposits, long filamentous processes, prominent microfilament bundles and the ability to display two distinct and reversible phenotypes. Time-lapse video-microscopy demonstrated that pericytes tend to overlap and aggregate, even in sparse cultures. After reaching confluence, they form multilayered areas that retract away from each other, resulting in the formation of multicellular nodules. These nodules increase in size and cellularity by going through repeated 5- to 6-h cycles of anchoring, spreading, cell proliferation and retraction. Alkaline phosphatase was not detected in pericytes at subconfluent or confluent densities, but this enzyme was expressed in areas of high cell density, such as multilayers and nodules. Pericytes synthesise and deposit an extracellular matrix at all stages of their in vitro development, including nodule formation. The matrix within the nodules contains cross-striated collagen fibres and matrix vesicles. Needle-like crystals of hydroxyapatite appear to be deposited within the matrix, thus leading to massive calcification of the nodule. Calcification, as assessed by electron microscopy, histochemical staining and X-ray microprobe analysis, occurred on plastic and collagen substrate in the absence of disodium-beta-glycerophosphate. The addition of this compound at 5 or 10 mM or the use of a collagen substratum (rather than plastic), brought forward the process of nodule formation and calcification by 3–6 days. Our results suggest that retinal pericytes may differentiate in vitro along the osteogenic pathway.
Pericytes derived from the retinal microvasculature undergo calcification in vitro
A.M. Schor, T.D. Allen, A.E. Canfield, P. Sloan, S.L. Schor; Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 1 November 1990; 97 (3): 449–461. doi: https://doi.org/10.1242/jcs.97.3.449
Download citation file:
Advertisement
Cited by
Special Issue: Cell Biology of Lipids
-LipidSI.png?versionId=3647)
Lipids are the main component of cellular membranes, but have key roles in many essential cellular processes, as well as structural and signalling functions. Our 2022 special issue showcases the diversity of current research in lipid cell biology.
The special issue includes an interview with Guest Editor James Olzmann. James has also contributed to this lipid droplet wall poster from our sponsor, Cayman Chemical.
Propose a new Workshop
-GSWorkshop.png?versionId=3647)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
We’re hiring: Community Manager, preLights
-preLights.jpg?versionId=3647)
We are seeking to appoint a new Community Manager to run our preprint highlighting service, preLights. Launched in 2018, this initiative has gained significant attention from researchers and the publishing industry. We are now looking for the right person to join us for the next phase of community building and the site’s growth and development. Please see the full job description for further details.
The application deadline is 20 May 2022.
Essay series: Equity, diversity and inclusion in cell biology
-EssaySeries.png?versionId=3647)
The JCS Essay Series is an initiative to help showcase and provide a platform for voices in the field of cell biology. The first topic we covered was 'Equity, diversity and inclusion in cell biology', and the winning and runner up essays are now available to read.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3647)
We are excited to announce the launch of the FocalPlane Network, an international directory of microscopists. The idea behind the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.