To examine the mechanism of intercellular adhesion in the establishment of limb skeletal elements we have investigated the process of limb bud cell aggregation in vitro. Limb bud cells are aggregation-competent immediately after their trypsin:collagenase dissociation in the absence of calcium. This aggregation is largely Ca2(+)-independent (CI) and is completely and reversibly inhibited by cycloheximide. In contrast, when limb bud cells are first allowed to recover from Ca2(+)-free trypsin:collagenase dissociation, aggregation of the surviving population is exclusively Ca2(+)-dependent (CD) and completely and reversibly inhibited by cycloheximide. The presence of exogenous calcium during initial cell dissociation retains a functional CD aggregation mechanism. However, incubation of such cells with EGTA releases the CD component and converts the cells to a predominantly CI aggregation. Rabbits were immunized with limb bud cells exhibiting the recovered CD aggregation mechanism and the resulting immune sera were screened for their effect on cell aggregation. Relative to pre-immune sera, intact immune IgG agglutinated dissociated limb bud cells whilst immune Fab fragments inhibited their aggregation. The aggregation-inhibiting antiserum recognizes five major limb bud cell surface components with apparent molecular weights of 72K, 50K, 23K, 14.5K and 8.5K (K = 10(3) Mr), respectively. Limb bud cell surface plasma membranes were isolated by sucrose gradient density centrifugation and detergent-solubilized proteins coupled to Sepharose 4B with cyanogen bromide. Equivalent cell surface plasma membrane proteins were 125I-iodinated and applied to the affinity column. Limb bud cell surface protein affinity chromatography in the presence of exogenous calcium yields a single protein with an apparent molecular weight of approximately 8.5 K. This protein molecule elutes at 0.6 M NaCl, indicating a high affinity, is recognized by the aggregation-inhibiting antiserum, and is itself capable of inhibiting CD limb bud cell aggregation. Fab fragments prepared from rabbit antisera specifically directed against the affinity-purified material also inhibit CD limb bud cell aggregation and this inhibition is neutralized by the 8.5 K protein. Our data thus demonstrate that CD limb bud cell aggregation is not mediated by fibronectin and/or collagen type I and indicate that this process is governed by a novel 8.5 K cell adhesion molecule.
An analysis of chick limb bud intercellular adhesion underlying the establishment of cartilage aggregates in suspension culture
J.A. Bee, K. von der Mark; An analysis of chick limb bud intercellular adhesion underlying the establishment of cartilage aggregates in suspension culture. J Cell Sci 1 July 1990; 96 (3): 527–536. doi: https://doi.org/10.1242/jcs.96.3.527
Download citation file:
Advertisement
Cited by
2021 JCS Prize winner announced
-JCSPrize.png?versionId=3749)
We are pleased to announce that the winner of the 2021 JCS Prize is Lee Dolat for his paper entitled ‘An endometrial organoid model of interactions between Chlamydia and epithelial and immune cells’.
Propose a new Workshop
-GSWorkshop.png?versionId=3749)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Cell scientist to watch: Christian Münch
-CSTW.png?versionId=3749)
Journal of Cell Science interviewed Christian Münch, who established his independent research group in 2016 at Goethe University Frankfurt. His lab studies cellular stress responses to mitochondrial protein misfolding, infection and disease, as well as developing proteomics methods.
Essay series: Equity, diversity and inclusion in cell biology
-EssaySeries.png?versionId=3749)
The JCS Essay Series is an initiative to help showcase and provide a platform for voices in the field of cell biology. The first topic we covered was 'Equity, diversity and inclusion in cell biology', and the winning and runner up essays are now available to read.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3749)
We are excited to announce the launch of the FocalPlane Network, an international directory of microscopists. The idea behind the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.