The action of activated 27,000 Mr toxin from Bacillus thuringiensis var. israelensis (Bti toxin) on Malpighian tubules of Rhodnius prolixus has been investigated. Its binding to the tubules is slowed by low temperature but is not prevented even at 0 degree C. The binding is less effective at pH 10 than at pH7. Pretreatment of the tubules with 0.1 mmol l-1 ouabain or bumetanide or 1 mumol l-1 5-hydroxytryptamine did not affect the toxicity of the toxin. The toxin causes very large changes in the trans-epithelial potential difference; it changes from 40 mV, lumen negative, often to more than 100 mV, lumen positive. This reflects an initial collapse of the potential of the basal cell membrane, followed by a large positive-going potential change at the luminal cell membrane. Just prior to the effects of the toxin on rapid fluid secretion, the basal cell membrane becomes permeable to sucrose molecules. Raffinose at 170 mmol l-1 in the bathing solution does not protect the tubules from Bti toxin action but dextran, Mr5000, at 60 mmol l-1 significantly delayed failure of fluid secretion and, even more, the onset of staining of the tubule cells with Trypan Blue. Exposing tubules to saline that is calcium-free and/or magnesium-free, or has a composition adjusted to be similar to that of the intracellular milieu, does not affect the time course of failure of fluid secretion induced by the toxin. There is no evidence that effective aggregates of Bti toxin molecules are formed in concentrated solutions.(ABSTRACT TRUNCATED AT 250 WORDS)

This content is only available via PDF.