Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. In Nephrotoma abbreviate the sex chromosomes are 8 μm long by 3.5 μm wide and have two orientations when they move: the long axis of the sex chromosome is either perpendicular or parallel to the spindle axis. We assume (1) that when a sex chromosome is perpendicular to the spindle axis it has a chromosomal spindle fibre to each pole, one from each kinetochore, as in other species; and (2) that when a sex chromosome is parallel to the spindle axis each kinetochore has spindle fibres to both poles, i.e. that the latter sex chromosomes are maloriented.

We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a ‘signal’ system. The results were different when one sex chromosome was maloriented. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. On the other hand, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. We argue that for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole.

This content is only available via PDF.