CO2 production has been followed by manometry in synchronous and asynchronous cultures of Schizosaccharomyces pombe prepared by elutriation from the same initial culture. The rate of production follows a linear pattern in synchronous cultures with a rate change once per cycle at the time of cell division. This pattern is most clearly shown in oscillations of the difference between values of the second differential (acceleration) for the synchronous and asynchronous cultures. The association between the rate change and the time of division is maintained during growth speeded up in rich medium and slowed down in poor medium and at lower temperature. It is also maintained after a shift-up in temperature. Results with wee mutants suggest that the association is with the S period rather than division itself. The rate and acceleration of CO2 production are approximately proportional to cell size (protein content) in asynchronous cultures. When synchronous cultures of the temperature-sensitive mutants cdc2.33 and cdc2.33 wee1.6 are shifted up to the restrictive temperature, the DNA-division cycle is blocked. The oscillatory pattern of CO2 production, however, continues for one to two cycles until the acceleration reaches a constant value, after which the oscillations are undetectable. This point is reached later in the double mutant and there is a phase difference in the oscillations compared to those in the single mutant. With both blocked mutants the ‘free-running’ oscillations are about 15% shorter than the normal cycle time. There are well-known examples of such oscillations in eggs but they are rare in growing systems.
Change in the rate of CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked
B. Novak, J.M. Mitchison; Change in the rate of CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked. J Cell Sci 1 December 1986; 86 (1): 191–206. doi: https://doi.org/10.1242/jcs.86.1.191
Download citation file:
Advertisement
Cited by
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4805)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
The Forest of Biologists

We are excited to announce the launch of The Forest of Biologists, a new biodiversity initiative created with support from the Woodland Trust, aiming to counteract nature loss and safeguard some of the most critically endangered ecosystems for future generations. For every Research Article and Review/Commentary article that is published in JEB (and our sister journals Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open), a native tree is planted in a forest in the UK.
Propose a new Workshop for 2025

Do you have an idea for a Workshop? We are now accepting proposals for our 2025 Biologists Workshops programme. As the scientific organiser, your involvement will be focused on the science. We'll take care of all the logistics. In 2025 we'll continue our efforts to diversify our Workshop programme and will be reserving one of our Workshops for an application from a Global South (GS) country to host an event overseas.
Editorial: Publishing where it matters
Editor-in-Chief Michael Way outlines Journal of Cell Science’s plans for the upcoming year and introduces Seema Grewal as our new Executive Editor.
Cell Scientists to Watch

As a community-focused journal, Journal of Cell Science is keen to support the next generation of cell biologists. Check out Cell Scientists to Watch, our interview series featuring talented researchers who have recently set up their own labs.