Chemotaxis and directed locomotion of neutrophil leucocytes are generally thought to be determined by the directed response of the cell to stable, spatial gradients of chemoattractants. In most cases, however, cells are also exposed to characteristic temporal changes in the attractant concentration during the lifetime of the gradient, especially as it develops. We have attempted to test whether neutrophils can respond to a spatial gradient in which these temporal changes are essentially absent. Gradients of formyl-peptides were made across a narrow barrier of agarose gel that separated two fluid reservoirs, and the cells were observed cinematographically as they moved between gel and glass. In gradients predeveloped at low temperature, at which cell motion and responses to attractant were inhibited, neutrophils showed no tendency to accumulate up-gradient when warmed to 37 degrees C. Yet their speed and turning behaviour was related to the local concentration of formyl-peptide. However, gradients that developed at 37 degrees C, whilst the cells were responsive, elicited directed locomotion. We also tested populations that were either spreading into or already evenly distributed across micropore filters to see how cells might sense directional cues. We reasoned that evenly distributed populations could accumulate in a spatial gradient only if cells were able to ‘read’ it. However, no redistribution occurred without an applied impulse of attractant. It seems that the oriented, temporal component of an attractant signal is essential if a directed response (i.e. non-random turning) is to occur; a spatial gradient of soluble attractant alone does not induce neutrophil accumulation or taxis. This finding has implications for the termination of the acute inflammatory response, for clinical tests of leucocyte behaviour and for morphogen signal interpretation by cells in developing tissues.
Neutrophil leucocyte chemotaxis is not induced by a spatial gradient of chemoattractant
M.G. Vicker, J.M. Lackie, W. Schill; Neutrophil leucocyte chemotaxis is not induced by a spatial gradient of chemoattractant. J Cell Sci 1 August 1986; 84 (1): 263–280. doi: https://doi.org/10.1242/jcs.84.1.263
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. Due to popular demand, we can currently only accept applications for online attendance. Apply now to attend this meeting virtually. Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4696)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Editorial: Publishing where it matters
Editor-in-Chief Michael Way outlines Journal of Cell Science’s plans for the upcoming year and introduces Seema Grewal as our new Executive Editor.
preLights 5th Birthday webinar

preLights, our preprint highlighting service, is celebrating its 5th birthday this year. To mark the occasion, join us online on 14 March 2023 at 16:00 GMT for a discussion, led by four preLights alumni, on how to identify and navigate the challenges and opportunities while shaping your career as an early-career researcher.
Cell Scientists to Watch

As a community-focused journal, Journal of Cell Science is keen to support the next generation of cell biologists. Check out Cell Scientists to Watch, our interview series featuring talented researchers who have recently set up their own labs.