Small phaneroplasmodia of Physarum polycephalum migrate, under sandwich conditions between two agar sheets and a membrane of cellophane, as thin protoplasmic sheets. This method suitably simulates the situation in the natural habitat of acellular slime moulds; i.e. the narrow clefts of the forest soil. The highly differentiated system of cytoplasmic fibrils displayed under these conditions survives both long-term extraction with glycerol and fixation with methanol, procedures that remove the strong inherent autofluorescence, thus allowing the use of immunocytochemical studies. The complicated fibrillar system of sandwiched plasmodia consists of: (1) a membrane-associated cortical filament layer in the anterior region; (2) a more or less regular polygonal fibrillar network in the intermediate region; and (3) a helically twisted fibrillar system encircling endoplasmic pathways as well as isolated strands in the posterior region. So far, three different cytoskeletal proteins have been identified immunocytochemically as constituents of the fibrillar structures: actin, myosin and AM-protein (fragmin). No positive identification of alpha-actinin, filamin and tropomyosin was obtained using antibodies against vertebrate proteins. Electron microscopy of glycerol-extracted specimens treated with antibodies against actin and myosin revealed that the 6 nm filaments consist of actin, whereas the electron-dense material between single actin filaments appears to be myosin. The AM-protein modulating the polymer status of actin is located in all fibrillar structures.

This content is only available via PDF.