The cell membranes and cell junctions of the rectal chloride epithelia of the larval dragonfly Aeshna cyanea were examined in thin sections and by freeze-fracture. These epithelia function in active ion absorption and maintain a high concentration gradient between the haemolymph and the fresh-water environment. Freeze-fracturing reveals fine-structural differences in the intramembraneous particles of the luminal and contraluminal plasma membranes of these epithelia, reflecting the functional diversity of the two membranes, which are separated by the junctional complex. The particle frequency of the basolateral plasma membranes is reduced after transfer of the larvae into high concentrations of environmental salinity. The junctional complex is located in the apical region and composed of three types of cell junctions: the zonula adhaerens, seen in freeze-fracture as a nearly particle-free zone; the extended and highly convoluted pleated septate junction and randomly interspersed gap junctions of the inverted type. Gap junctions also occur between the basolateral plasma membranes. They provide short-cuts in the diffusion pathway for direct and rapid co-ordination of the interconnected cell processes. Colloidal and ionic lanthanum tracer solutions applied in vivo from the luminal side penetrate through the cuticle via epicuticular depressions, but invade only the apical portion of the junctional complex. This indicates that the pleated septate junction constitutes a structural control of the paracellular pathway across the chloride epithelia, which are devoid of tight junctions. The structure of the pleated septate junctions is interpreted as a device for the extension of the diffusion distance, which is inversely related to the net diffusion. A conservative estimate of the total length of the junction, and the number and extension of septa reveals that the paracellular route exceeds the transcellular route by a factor of 50.

This content is only available via PDF.