Two temperature-sensitive cell-cycle mutants were used to generate abnormally large cells (size estimated by protein content) with either normal or increased DNA contents. The first mutant, cc1, blocks DNA synthesis, but allows cell growth at the restrictive temperature. The cells do not progress through the cell cycle while at the restrictive temperature, but do recover and complete the cell cycle when returned to permissive conditions. The progeny have increased cell size and normal DNA content. Downward regulation of cell size occurs during the ensuing cell cycle at permissive temperature. Two processes are involved. First, the G1 period is reduced or eliminated. As initial cell size increases there is a progressive shortening of the cell cycle to 75% of normal. This limit cell-cycle duration is reached when the initial mass of the cell is equal to or greater than that of normal cells at the time of DNA synthesis initiation (0.25 of a cell cycle). Cells with the limit cell cycle begin macronuclear DNA synthesis immediately after fission. The durations of the S period and fission are normal. Second, the rate of cell growth is unaffected by the increase in cell size, and results in the partitioning of excess cell mass between the daughter cells at the next fission. The second mutant, cc2, blocks cell division, but allows DNA synthesis to occur at a reduced rate so that cells with up to about 140% of the normal initial DNA content and twice the normal cell mass can be produced. The pattern of cell-cycle shortening is the same as in ccl. The rates of growth and both the rate and amount of DNA synthesis are proportional to the initial DNA content. This suggests that the rates of growth and DNA synthesis are limited by the transcriptional activity of the macronucleus in both cc1 and cc2 cells when they begin the cell cycle with experimentally increased cell mass. Increases in both cell size and initial DNA content are required to bring about increases in the rates of growth and DNA accumulation.

This content is only available via PDF.