Monkey periodontal ligament fibroblasts (MPLF cells), human gingival fibroblasts (HGF cells), rat embryonic calvaria cells (REC cells), porcine periodontal ligament epithelial cells (PPLE cells) and rat osteosarcoma 17/2 cells (ROS cells) were incorporated into 3-dimensional collagen gels plated in 60 mm Petri dishes in order: first, to measure the capacity of these cell types to contract; second, to investigate cell-collagen and intercellular relationships during contraction; and third, to define the cellular contribution to tissue contraction in an in vitro system. Measurements at times up to 72 h on 3 ml gels containing 5 × 10(5) cells and with a collagen concentration of 1.20 mg/ml showed that MPLF cells contracted the gels at a significantly greater rate (P less than 0.001) than did the other cell types. In addition, contraction started sooner and was of greater extent than with the other cells. HGF cells contracted the gels more rapidly than REC and PPLE cells, while ROS cells caused no contraction. Several stages of gel compaction could be defined: (1) the attachment of cells to collagen; (2) cellular spreading within the collagen fibre matrix; (3) organization and alignment of collagen fibres by cell processes; (4) cell migration; (5) establishment of intercellular contacts; and (6) the development of a cellular reticular arrangement within the gel and the extension of this arrangement into a 3-dimensional, tissue-like, honeycomb network. Electron microscopic observations on 0.1 ml gels containing MPLF cells showed that, in the early contractile phase, numerous cell processes attached to or enclosed collagen fibrils. These processes contained microfilamentous material and few organelles. In compacted gels, the cells contained an increased amount of distended rough endoplasmic reticulum and Golgi membranes. Since MPLF cells have the capacity for vigorous contraction of the collagen gels and since they develop a reticular, 3-dimensional structure in compacted gels that is reminiscent of the relationship of periodontal ligament fibroblasts to collagen fibres in vivo, it is suggested that they could provide the major force necessary for tooth eruption in vivo. This system also provides a well-defined in vitro model to study the sequential stages that occur during contraction processes.
Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types
C.G. Bellows, A.H. Melcher, J.E. Aubin; Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types. J Cell Sci 1 August 1981; 50 (1): 299–314. doi: https://doi.org/10.1242/jcs.50.1.299
Download citation file:
Advertisement
Cited by
Call for papers: Cell Biology of Motors
(update)-MotorCFPExtended.jpg?versionId=3964)
Journal of Cell Science is pleased to welcome submissions for consideration for an upcoming special issue, Cell Biology of Motors. The deadline for submitting articles has been extended to 30 August 2022.
Find out more about our preprint policies
-bioRxiv.jpg?versionId=3964)
Last year, 47% of the manuscripts published in Journal of Cell Science were posted as preprints on bioRxiv. You can find our preprint policies here.
Cell scientist to watch: Jeremy Carlton
(update)-CSTW.png?versionId=3964)
Journal of Cell Science caught up with Jeremy Carlton, who established his independent research group in 2012 at the Division of Cancer Studies, King's College London. His lab is currently seconded to the Francis Crick Institute and is investigating membrane and organelle remodelling during cell division. This year, he was awarded the Hooke Medal by the British Society for Cell Biology (BSCB).
The FocalPlane Network
-FocalPlaneNetwork.png?versionId=3964)
The FocalPlane Network is an international directory of researchers with microscopy expertise including developers, imaging scientists and bioimage analysts. It is designed to help you find speakers, committee members, reviewers and potential collaborators. Find out more about the FocalPlane Network.
The Corona Files
-Mole.png?versionId=3964)
“We were not ready for a pandemic, despite decades of warnings.”
Our resident insectivore, Mole, continues his latest series – The Corona Files. This time, Mole reflects on what we have learned from the pandemic.