Serial sections of mitotic spindles of the marine cryptophycean alga, Cryptomonas, were analysed to determine what types of microtubules they contained and which of these microtubules came close enough to each other (50 nm or less) for the commonly described crossbridging to be possible. Interpolar microtubules were rare (less than or equal to 1%) but from prometaphase through anaphase there was a substantial interpolar framework of free and polar microtubules which came close enough to one another to cross-bridge and generate anaphase spindle elongation by intermicrotubule sliding. However, such elongation would also require some concomitant polar microtubule polymerization. In contrast, only about 12% of the chromosomal microtubules came within bridging distance of interpolar framework microtubules. Thus, assuming that microtubules were accurately fixed in their in vivo positions, crossbridging between chromosomal and interpolar framework microtubules is unlikely to function in chromosome-to-pole movement. In all stages the great majority of chromosomal microtubules were found to extend all the way from the chromatin to the pole. Although the identification of intermicrotubular bridges in section is often ambiguous, the best and most frequent examples of bridges in the present material were between polar microtubules and between chromosomal microtubules but not between the 2 different categories. The spindles also contained 5-nm-diameter microfilaments associated mainly with chromosomal microtubules and occasionally with polar microtubules. A specific model for the possible involvement of these filaments in mitosis is presented.
The arrangement of microtubules in serially sectioned spindles of the alga Cryptomonas
B.R. Oakley, I.B. Heath; The arrangement of microtubules in serially sectioned spindles of the alga Cryptomonas. J Cell Sci 1 June 1978; 31 (1): 53–70. doi: https://doi.org/10.1242/jcs.31.1.53
Download citation file:
Advertisement
Cited by
Call for papers: Cell Biology of Motors
(update)-MotorCFPExtended.jpg?versionId=3964)
Journal of Cell Science is pleased to welcome submissions for consideration for an upcoming special issue, Cell Biology of Motors. The deadline for submitting articles has been extended to 30 August 2022.
Find out more about our preprint policies
-bioRxiv.jpg?versionId=3964)
Last year, 47% of the manuscripts published in Journal of Cell Science were posted as preprints on bioRxiv. You can find our preprint policies here.
Cell scientist to watch: Jeremy Carlton
(update)-CSTW.png?versionId=3964)
Journal of Cell Science caught up with Jeremy Carlton, who established his independent research group in 2012 at the Division of Cancer Studies, King's College London. His lab is currently seconded to the Francis Crick Institute and is investigating membrane and organelle remodelling during cell division. This year, he was awarded the Hooke Medal by the British Society for Cell Biology (BSCB).
The FocalPlane Network
-FocalPlaneNetwork.png?versionId=3964)
The FocalPlane Network is an international directory of researchers with microscopy expertise including developers, imaging scientists and bioimage analysts. It is designed to help you find speakers, committee members, reviewers and potential collaborators. Find out more about the FocalPlane Network.
The Corona Files
-Mole.png?versionId=3964)
“We were not ready for a pandemic, despite decades of warnings.”
Our resident insectivore, Mole, continues his latest series – The Corona Files. This time, Mole reflects on what we have learned from the pandemic.