Unfertilized and fertilized eggs of the sea urchin Lytechinus pictus were preloaded with [14C]valine and exposed to individual solutions of each of the twenty ‘coded’ [12C]amino acids in artificial sea water. After 1 h incubation the amount of radioactivity in the medium was determined. The radioactivity was effectively displaced by most of the other neutral [12C]amino acids that are known to compete with valine for uptake. A chromatographic test with fertilized eggs showed the displaced radioactivity to be [14C]valine and not some metabolic product. Addition of acidic, basic or some neutral amino acids that are known to be poor inhibitors of valine uptake did not cause significant quantities of label to appear in the medium. For the unfertilized eggs, the concentration of acid-soluble label remained many hundreds of times greater in the egg fluid than in the sea water.

Tests indicated that efflux of [14C]valine and subsequent competition for re-entry is a primary factor responsible for the displacement phenomenon. That this may not be the sole factor is suggested by the fact that some amino acids that are known to be powerful inhibitors of valine uptake were found to be only weak displacers of [14C]valine. Neither [14C]arginine nor [14C]glutamic acid were displaced in significant amounts from preloaded unfertilized or fertilized eggs by any of the tested [12C]amino acids.

Attempts were made to utilize the displacement of [12C]valine to elevate the incorporation of [14C]valine and of other labelled amino acids into protein by intact eggs. Unfertilized and fertilized eggs were pretreated with related [12C]amino acids and then exposed to [14C]valine or a mixture of [14C]amino acids. The results varied in the different tests, ranging from no significant increase to 2-fold.

This content is only available via PDF.