To elucidate the method of uptake of a neutral iron compound into the placenta, isolated human chorionic villi were incubated in a medium containing the substance and were fixed at intervals and subsequently examined using transmission electron microscopy. None of the specimens examined showed evidence of vesicular transport in either micro- or macro-pinocytic vesicles which were either coated or smooth-surfaced. Iron uptake may involve attachment of particles to differentiated regions of the cell surface of the syncytiotrophoblast. These differentiated zones in the syncytial cell surface are composed of morphological distinct parts and therefore probably merit classification as an organelle. Our interpretation of the organelle's structure is that it is flattened, with a maximum distance across of about 30 nm in the plane of the membrane. It is of otherwise uncertain shape but possesses a multilaminar structure. The external layer is apparently composed of the iron compound to be taken up. Beneath this is an electron-lucent layer possibly composed of glycoacalyx. The next innermost layer is continuous with the trilaminar unit membrane of the cell surface, however no trilaminar appearance is observed within the organelle. Beneath the membrane layer is an electron-dense plaque of amorphous material. Occasionally in favourable sections there is the suggestion of a thin electron-lucent strip interposed between the dense plaque and the membrane layer. The whole structure is composed therefore of 4 or 5 different regions. One possible function is that of initial binding in a process of active as opposed to passive transport of iron into the cell.
Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron
C.D. Ockleford, G. Menon; Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron. J Cell Sci 1 June 1977; 25 (1): 279–291. doi: https://doi.org/10.1242/jcs.25.1.279
Download citation file:
Advertisement
Cited by
Call for papers: Cell Biology of Motors
(update)-MotorCFPExtended.jpg?versionId=3964)
Journal of Cell Science is pleased to welcome submissions for consideration for an upcoming special issue, Cell Biology of Motors. The deadline for submitting articles has been extended to 30 August 2022.
Find out more about our preprint policies
-bioRxiv.jpg?versionId=3964)
Last year, 47% of the manuscripts published in Journal of Cell Science were posted as preprints on bioRxiv. You can find our preprint policies here.
Cell scientist to watch: Jeremy Carlton
(update)-CSTW.png?versionId=3964)
Journal of Cell Science caught up with Jeremy Carlton, who established his independent research group in 2012 at the Division of Cancer Studies, King's College London. His lab is currently seconded to the Francis Crick Institute and is investigating membrane and organelle remodelling during cell division. This year, he was awarded the Hooke Medal by the British Society for Cell Biology (BSCB).
The FocalPlane Network
-FocalPlaneNetwork.png?versionId=3964)
The FocalPlane Network is an international directory of researchers with microscopy expertise including developers, imaging scientists and bioimage analysts. It is designed to help you find speakers, committee members, reviewers and potential collaborators. Find out more about the FocalPlane Network.
The Corona Files
-Mole.png?versionId=3964)
“We were not ready for a pandemic, despite decades of warnings.”
Our resident insectivore, Mole, continues his latest series – The Corona Files. This time, Mole reflects on what we have learned from the pandemic.