The rates of polyadenylated messenger RNA and ribosomal RNA synthesis were measured in synchronously dividing cultures of fission yeast (Schizosaccharomyces pombe). Control asynchronous cultures, which had been exposed to the conditions used for preparing synchronous cultures, were investigated to check for effects of the synchronization procedure itself on RNA synthesis. After each period of DNA synthesis in synchronous culture, the rates of messenger and ribosomal RNA synthesis doubled, suggesting that gene number controls the rate of messenger and ribosomal RNA synthesis. This was confirmed by experiments with asynchronous, exponential-phase cultures in which DNA synthesis was inhibited by hydroxyurea. Both synchronous culture and hydroxyurea experiments suggested that there is a delay of 15 min (0-1 of the cell generation time) between replication of the DNA and transcription of both gene copies. A pattern of protein accumulation was calculated from changes in the rate of polyadenylated messenger RNA synthesis during synchronous culture. The simulated pattern indicates that protein is accumulated linearly, with a doubling in the rate of accumulation once per cell cycle. The simulated pattern of protein accumulation is very similar to measurements previously reported by other workers of changes in activities of 3 enzymes in synchronous cultures. It is suggested that the doubling of the rate of messenger RNA synthesis, as a consequence of the replication of the DNA once per cycle, provides the basis of a mechanism for control of the doubling of other cellular constituents during the cell cycle.

This content is only available via PDF.