The salivary glands of 3rd or 4th instar larvae of Simulium niditifrons are about 5 mm long and up to 400 µ wide. They have a capacious lumen which is normally filled with secretion.

The apical (luminal) plasmalemma of the gland cells is thrown into numerous microvilli. The basal plasmalemma is usually straight but is infolded in places. The infoldings may be complex near to cell junctions. There is a thick, uniform basement membrane. Contact surfaces of adjacent cells often interdigitate. A septate junction extends inwards from the lumen for one-quarter the depth of the cells. Rough endoplasmic reticulum is distributed evenly throughout the cytoplasm. Many Golgi complexes with dark membrane-bounded granules are scattered throughout the cytoplasm. Solitary granules, often more than I µ in diameter, lie in the apical cytoplasm, especially near the apical border of the cell. These granules resemble the larger Golgi granules and the contents of the lumen. Solitary granules consisting of 2 components have been seen in various stages of passage through the cell membrane. The 2 components are present in roughly constant proportions and can be identified in the larger Golgi granules and in the secretion in the lumen. The nucleus is spherical. The nuclear envelope is smooth in the larger cells of a gland but may be folded in the smaller cells. There are 80-100 pores/µ2 of nuclear envelope. Each pore appears to have a small granule at its centre. Microtubules, about 180 Å thick, are numerous in the apical cytoplasm, particularly near the luminal border. Tubules which lie deep in the cytoplasm are flanked by a clear area 100-200 Å wide.

The fine structure of a salivary gland cell of Simulium appears to indicate that the major components of the salivary secretion are synthesized in association with the ribosomes on the rough endoplasmic reticulum, concentrated in the Golgi regions, formed into secretion granules, and passed out of the cell into the lumen of the gland by reverse phagocytosis.

This content is only available via PDF.