Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids – which cooperate with cristae-shaping proteins to establish inner membrane architecture – could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.

Mitochondria are double membrane-bound organelles that are the main sites of bulk ATP synthesis in most eukaryotic cells. The outer mitochondrial membrane (OMM) is highly permeable, allowing for diffusion of metabolites and small molecules into and out of mitochondria (Camara et al., 2017; Helle et al., 2013). In contrast, the inner mitochondrial membrane (IMM) houses bioenergetic complexes of the electron transport chain (ETC) and maintains a proton gradient that drives ATP synthesis (Vercellino and Sazanov, 2022). Additionally, the IMM is organized into highly curved inward folds known as cristae, which increase the membrane area for the ETC (Mannella et al., 2001, 2013). Cristae exhibit significant diversity across eukaryotes – and even between tissues in metazoans – and remodel according to metabolic needs (Cogliati et al., 2016; Pánek et al., 2020). The formation of cristae requires the cooperative action of three main cristae-shaping protein complexes: ATP synthase dimers, which induce membrane bending at cristae tips (Blum et al., 2019; Davies et al., 2011, 2012; Strauss et al., 2008) optic atrophy protein 1 (OPA1), which is a dynamin-related GTPase (Frezza et al., 2006; Patten et al., 2014), and the mitochondrial contact site and cristae-organizing system (MICOS) complex (Harner et al., 2011; Hoppins et al., 2011). OPA1 and the MICOS complex physically interact at animal crista junctions (Glytsou et al., 2016; Hu et al., 2020; Schweppe et al., 2017). Although the protein machinery involved in cristae formation has been extensively characterized, emerging evidence reveals distinct roles for mitochondrial phospholipids (PLs) in orchestrating membrane architecture and organization (Ikon and Ryan, 2017; Joshi et al., 2023; Venkatraman et al., 2023, 2024). Notably, abundant mitochondrial PLs like phosphatidylethanolamine (PE) and cardiolipin (CL), which do not spontaneously form bilayers, are known to interact with cristae-shaping proteins (Aaltonen et al., 2016; Ban et al., 2017; Friedman et al., 2015; Liu and Chan, 2017; Mårtensson et al., 2017; Mehdipour and Hummer, 2016; Mühleip et al., 2019) and might modulate cristae ultrastructure through their intrinsic molecular geometry (Decker and Funai, 2024; Venkatraman et al., 2023, 2024).

The distinctive architecture of highly curved cristae membranes observed in contemporary eukaryotes likely emerged during early mitochondrial evolution. The hypothesis that mitochondria were once free-living bacteria that became eukaryotic organelles following an endosymbiotic event began with descriptions of plastid origins from free-living cyanobacteria by Konstantin Mereschowsky in the early 20th century (see translation by Martin and Kowallik, 1999), which were extended to mitochondria by Ivan Wallin (Wallin, 1927) and later expanded upon and popularized by Lynn Margulis (Sagan, 1967). The endosymbiotic theory was controversial in its infancy but gained acceptance once analysis of mitochondrial DNA (mtDNA) showed an unambiguous phylogenetic connection to proteobacteria (Andersson et al., 1998; Bonen et al., 1977; Gray, 1983; Gray et al., 1998, 2001; Muñoz-Gómez et al., 2017; Roger et al., 2017; Wang and Wu, 2015). Although still incompletely elucidated, current theories for eukaryogenesis propose an endosymbiotic event where an alphaproteobacterium was engulfed by a host cell originating from the Asgardarchaeota superphylum (Spang et al., 2015). This event resulted in a mitochondria-containing last eukaryotic common ancestor (LECA) (Roger et al., 2017). Morphological similarities between mitochondrial cristae structure and intracytoplasmic membranes (ICM) in bacteria, which canonically function to increase membrane surface area for bioenergetic processes akin to their cristae counterparts (Niederman, 2006), have also been proposed as lines of evidence for the prokaryotic origins of mitochondria (Degli Esposti, 2014; Muñoz-Gómez et al., 2017). More recent studies have delineated the alphaproteobacterial origins of the cristae-shaping MICOS complex (Huynen et al., 2016; Muñoz-Gómez et al., 2015a, 2023), establishing an evolutionary connection between modern cristae structures and ICMs.

Determining the prokaryotic origins of cristae-shaping proteins is complemented by research on the origin of mitochondrial lipids, centered around the metabolism of CL (Geiger et al., 2023; Raval et al., 2023). The bacterial origins of CL have putatively been identified using phylogenetics (Luévano-Martínez and Duncan, 2020; Tian et al., 2012), but definitive metabolic comparisons between prokaryotes and eukaryotes are still scarce (Rappocciolo and Stiban, 2019). To this end, this Review will summarize current knowledge on the diversification of mitochondrial-specific lipidomes following eukaryogenesis and will delineate models for how these lipidic features relate to the evolution of high-curvature cristae structures from more primitive ICMs in prokaryotes. We will first address the minimum features required for evolution of cristae – curvature-inducing proteins – but will also present possible relationships between these structures and lipidic contributions as derived from contrasting prokaryotic and mitochondrial membrane compositions. Our comparisons reveal the need for further investigation into alphaproteobacterial lipid metabolism to bridge the gap in knowledge between the proteinaceous and lipidic origins of cristae morphologies.

The endosymbiotic theory, which attests that mitochondria evolved from an alphaproteobacterium that was engulfed by a host cell (related to Asgard archaea), has cemented itself as a focal point for understanding the origins of eukaryotic cells (Martin et al., 2015). Although initially controversial, analysis of universally encoded ribosomal RNA genes from mitochondrial DNA (mtDNA) has corroborated the bacterial origins of mitochondria (Bonen et al., 1977; Gray, 2012). In particular, analysis of slow-evolving plant mitochondrial rRNAs led to the identification of the class alphaproteobacteria as the primary mitochondrial ancestor (Gray et al., 1999; Schnare and Gray, 1982; Spencer et al., 1984; Yang et al., 1985). More recent phylogenomic, biochemical and metabolic analyses have led to the widespread acceptance of the theory (Roger et al., 2017; Wang and Wu, 2015). However, several questions remain on the identity of the mitochondrial ancestor, the nature of its symbiotic relationship with archaeal host(s) (Wang and Wu, 2014) and the chronology of the process (Dacks et al., 2016; Shih and Matzke, 2013).

Current investigations into mitochondrial origins focus on elucidating the identity of the alphaproteobacterial ancestor, its metabolism and potential symbiotic interactions with the archaeal host cell. Initial insights came from analysis of the mitochondrial proteome (Gabaldón and Huynen, 2004; Gray, 2015), which includes over 1000 different proteins of which only 15% are involved in energy metabolism and 1% are encoded by mtDNA (Pfanner et al., 2019; Rath et al., 2021). In animals, mtDNA encodes some of the subunits for complexes directly involved in oxidative phosphorylation – complexes I–IV and ATP synthase (complex V). However, some unicellular eukaryotes, such as the Jakobid protists, exhibit much larger mtDNA genomes, encoding several bacterial-like proteins involved in ribosomal protein translation and a bacterial-type RNA polymerase in addition to ETC machinery (Burger et al., 2013; Lang et al., 1997). This evidence, coupled with phylogenomic analysis, suggests that the Jakobid mitochondrial genome represents an intermediate evolutionary stage, retaining a larger subset of the ancestral endosymbiont genes compared to that seen for other eukaryotic lineages, which underwent more extensive gene transfer to the nucleus (Kannan et al., 2014). Phylogenomic studies vying to unearth the closest living mitochondrial relative initially identified the alphaproteobacterial order Rickettsiales, obligate intracellular parasites, as a potential relative of the mitochondrion ancestor (Andersson et al., 1998; Fitzpatrick et al., 2006; Viale and Arakaki, 1994). However, subsequent analyses placed mitochondria as a sister group to other orders of alphaproteobacteria (Abhishek et al., 2011; Thiergart et al., 2012). Thus, the exact phylogenetic relationship between mitochondria and extant alphaproteobacteria has remained a question under active investigation.

The advent of metagenomics, which allows for identification and genetic profiling of microbial organisms in their native environment independent of culturing (Pérez-Cobas et al., 2020), has led to a resurgence of work and debate on the phylogenetic placement of mitochondria (Fan et al., 2020; Martijn et al., 2018). The inclusion of metagenome-assembled genomes (MAGs) collected from marine samples led to a positioning of the mitochondrial ancestor at the root of most alphaproteobacteria (Martijn et al., 2022; Muñoz-Gómez et al., 2022). In parallel, metagenomics has revolutionized our understanding of the origin of the archaeal host cell, placing it within the Asgardarchaeota superphylum (Eme et al., 2023; Spang et al., 2015; Zaremba-Niedzwiedzka et al., 2017). It is likely that alphaproteobacteria co-evolved with Asgard archaea for some time predating the LECA, rather than endosymbiosis occurring as a single saltational event (Roger et al., 2017). Cultivation of Asgard archaea from environmental samples have allowed for generation of co-cultures that have led to analysis of extant Asgard cell biology (Imachi et al., 2020; Rodrigues-Oliveira et al., 2023). Analogous efforts for environmental alphaproteobacteria will be invaluable in better defining the cell biology and metabolic state of the mitochondrial ancestor.

Cristae structures assume various forms across the eukaryotic domain. The two best-characterized types are flat, lamellar cristae traditionally observed in most mammalian tissues, and tubular cristae seen in organisms such as Saccharomyces cerevisiae (Harner et al., 2016; Klecker and Westermann, 2021; Pánek et al., 2020; Unger et al., 2017) (Fig. 1A,B). In addition, discoidal cristae, with a mixture of IMM-attached and unattached disk-like structures, have been identified predominantly in protists such as Trypanosoma (Kaurov et al., 2018). Reflecting this structural diversity, prokaryotic ICMs exhibit a range of morphologies. In alphaproteobacteria, lamellar-like structures have been observed, with ICMs parallel but unattached to the inner membrane (IM) (Kulichevskaya et al., 2006; Muñoz-Gómez et al., 2017, 2023; Niederman, 2006; Scott et al., 1981; Watson and Mandel, 1971) (Fig. 1B). Similar lamellar-like ridged ICM structures have also been identified in a range of methanotrophic proteobacterium (Degli Esposti, 2014; Dunfield et al., 2010; Kip et al., 2011; Reed et al., 1980). Vesicular ICMs, with little to no membrane attachment, are found in multiple anoxygenic photosynthesizing alphaproteobacteria (of the orders Rhidozobiales, Rhodobacterales and Rhodospirillales) (Iba et al., 1988; Kaufmann et al., 1982) (Fig. 1B,C), as well as in some magnetotactic bacterium that contain organelle-like structures called magnetosomes (Muñoz-Gómez et al., 2017; Schüler, 2008). Recently, cristae-like compartments have been observed outside of the alphaproteobacterial class in sulfate-reducing free-living Desulfobacterota and isolated Desulfovibrio carbinolicus belonging to the Thermodesulfobacteriota phylum (McGlynn et al., 2022), with lamellar ICM shapes comparable to those of eukaryotic cristae (Fig. 1A). Though apparently dissimilar from mitochondrial cristae, ICMs have been proposed to be linked to cristae, both by the presence of components homologous to MICOS and the aerobic ETC and by their roles in compartmentalization of bioenergetic processes (Muñoz-Gómez et al., 2017). However, further molecular characterizations of bacterial ICMs are required to delineate evolutionary links with cristae morphologies.

Fig. 1.

Bacterial ICMs exhibit internal invaginations that resemble eukaryotic cristae. (A) Thin-section TEM images showing tubular cristae-like ICM compartments in free-living Desulfobacterota, and similar cristae-like ICM tubules in Desulfovibrio carbinolicus strains, isolated from the same consortium; images derived from studies presented in McGlynn et al., (2022) . The eukaryotic model organism S. cerevisiae exhibits tubular cristae structures, whereas the commonly used human embryonic kidney (HEK293) cell line exhibits predominantly lamellar cristae structures. Scale bars: 500 nm. S. cerevisiae image derived from samples prepared as in Venkatraman et al. (2023); HEK293 image derived from samples prepared as in Venkatraman and Budin (2024). (B) Eukaryotic mitochondria tend to exhibit lamellar, tubular or discoidal cristae morphology, whereas orders of the class alphaproteobacteria exhibit a range of ICM morphologies. Lamellar-like ICMs, which exhibit parallel cytoplasmic protrusions that do not contact the inner membrane, are commonly observed in nitrogen-fixing and several methanotrophic alphaproteobacteria (Degli Esposti, 2014; Kip et al., 2011; Muñoz-Gómez et al., 2017). Vesicular ICMs are well characterized from TEM analysis of Cereibacter sphaeroides and types of magnetotactic alphaproteobacteria (Muñoz-Gómez et al., 2023; Schüler, 2008). (C) Previous phylogenetic results suggested mitochondria as relatives of the alphaproteobacterial order Ricketsialles (Viale and Arakaki, 1994); however, the current phylogenetic consensus places mitochondria as sister to the entire alphaproteobacteria clade (Aouad et al., 2022; Eme et al., 2023; Muñoz-Gómez et al., 2022). This simplified and non-exhaustive cladogram indicates the two domains of life – bacteria and archaea – with proto-mitochondria emerging in early alphaproteobacteria. Eukaryogenesis is marked by the horizontal transfer (red dotted arrow) from Bacteria to Hordarchaeales in Asgard archaea. §, †, #, * and ‡ connect species listed in B to their respective clades in C.

Fig. 1.

Bacterial ICMs exhibit internal invaginations that resemble eukaryotic cristae. (A) Thin-section TEM images showing tubular cristae-like ICM compartments in free-living Desulfobacterota, and similar cristae-like ICM tubules in Desulfovibrio carbinolicus strains, isolated from the same consortium; images derived from studies presented in McGlynn et al., (2022) . The eukaryotic model organism S. cerevisiae exhibits tubular cristae structures, whereas the commonly used human embryonic kidney (HEK293) cell line exhibits predominantly lamellar cristae structures. Scale bars: 500 nm. S. cerevisiae image derived from samples prepared as in Venkatraman et al. (2023); HEK293 image derived from samples prepared as in Venkatraman and Budin (2024). (B) Eukaryotic mitochondria tend to exhibit lamellar, tubular or discoidal cristae morphology, whereas orders of the class alphaproteobacteria exhibit a range of ICM morphologies. Lamellar-like ICMs, which exhibit parallel cytoplasmic protrusions that do not contact the inner membrane, are commonly observed in nitrogen-fixing and several methanotrophic alphaproteobacteria (Degli Esposti, 2014; Kip et al., 2011; Muñoz-Gómez et al., 2017). Vesicular ICMs are well characterized from TEM analysis of Cereibacter sphaeroides and types of magnetotactic alphaproteobacteria (Muñoz-Gómez et al., 2023; Schüler, 2008). (C) Previous phylogenetic results suggested mitochondria as relatives of the alphaproteobacterial order Ricketsialles (Viale and Arakaki, 1994); however, the current phylogenetic consensus places mitochondria as sister to the entire alphaproteobacteria clade (Aouad et al., 2022; Eme et al., 2023; Muñoz-Gómez et al., 2022). This simplified and non-exhaustive cladogram indicates the two domains of life – bacteria and archaea – with proto-mitochondria emerging in early alphaproteobacteria. Eukaryogenesis is marked by the horizontal transfer (red dotted arrow) from Bacteria to Hordarchaeales in Asgard archaea. §, †, #, * and ‡ connect species listed in B to their respective clades in C.

Close modal

Despite the apparent diversity of cristae and ICM morphologies, high membrane curvature might be a hallmark of these structures and could mediate their specific bioenergetic functions. In mitochondria, positive membrane curvature is generated predominantly by rows of ATP synthase dimers that bend the membrane along cristae tips (Blum et al., 2019), whereas membrane deformation by MICOS produces negative curvature at attached crista junctions (CJs) (Rabl et al., 2009; Tarasenko et al., 2017; Zuccaro et al., 2024 preprint). By contrast, alphaproteobacteria and other prokaryotes lack ATP synthase dimerization subunits (e and g) (Kühlbrandt, 2015, 2019), which suggests that membrane bending by ATP synthase and positively curved cristae tips evolved during eukaryogenesis (Fig. 2A). Genetic deletions of subunits e and g in S. cerevisiae result in monomeric ATP synthases and multi-lamellar onion-shaped cristae. These morphologically resemble lamellar prokaryotic ICMs (Klecker and Westermann, 2021; Paumard et al., 2002; Rabl et al., 2009; Venkatraman et al., 2023), although further volumetric electron microscopy (EM) analyses are required to definitively assess these similarities. Monomeric ATP synthases retain the ability to localize into regions of high curvature in vitro (Valdivieso González et al., 2023), and the overproduction of subunit b of ATP synthase in Escherichia coli (which contain monomeric ATP synthases and do not naturally form ICMs) drives ICM formation (Arechaga et al., 2000; Carranza et al., 2017). Although OPA1 is thought to have become specialized in opisthokonts, a eukaryotic supergroup which includes fungi and animals (Hashimi et al., 2024), homologs of the major MICOS subunit Mic60 have been identified in alphaproteobacteria, suggesting that its presence predates eukaryogenesis (Huynen et al., 2016; Muñoz-Gómez et al., 2015a, 2022, 2023) (Fig. 2B). Several studies have demonstrated comparable functions for Mic60 in alphaproteobacteria and eukaryotic cristae. Genetic deletion of mic60 in alphaproteobacterial strains reduces growth in conditions that required ICM development, suggesting a conserved functional role for Mic60 (Muñoz-Gómez et al., 2023). Furthermore, alphaproteobacterial Mic60 has been shown to be capable of membrane deformation in vitro and, strikingly, its heterologous expression in Mic60-deficient S. cerevisiae partially rescued cristae morphology (Tarasenko et al., 2017). These results imply that curvature generation by Mic60 at ICM–IM junctions may have predated the formation of negatively curved CJs in eukaryotes (Rabl et al., 2009).

Fig. 2.

Proteinaceous features of eukaryotic cristae and prokaryotic ICMs. (A) Eukaryotic cristae feature rows of ATP synthase dimers (PDB ID: 7AJF) that provide positive curvature at the cristae tips. ATP synthase dimerization subunits are absent in bacteria, which exhibit ATP synthase monomers (PDB ID: 6OQR) lacking membrane bending capabilities compared to the dimeric form (Daum et al., 2013; Paumard et al., 2002). (B) AlphaFold 2 structural depictions of the conserved C-terminal mitofilin domains of human Mic60 (Uniprot ID: Q16891, 562–758) and the putative Cereibacter sphaeroides Mic60 homolog (Uniprot ID: Q3J6D4, 270–433), adapted from Benning et al. (2024) preprint. (C) At CJs, OPA1 and MICOS interact to tighten the junction, giving rise to negative curvature. Bacteria lack OPA1, but some alphaproteobacteria like Cereibacter sphaeroides retain homologs of Mic60, which could presumably account for some curvature at ICM–IM junctions. We speculate that despite the absence of ATP synthase dimerization, the presence of a Mic60 homolog creates the bulbous appearance of ICMs observed in many alphaproteobacteria, as junctions retain some tightness while curvature at ICM tips is absent. MTS, mitochondrial targeting signal; CM, cristae membrane; OM, outer membrane; IM, inner membrane.

Fig. 2.

Proteinaceous features of eukaryotic cristae and prokaryotic ICMs. (A) Eukaryotic cristae feature rows of ATP synthase dimers (PDB ID: 7AJF) that provide positive curvature at the cristae tips. ATP synthase dimerization subunits are absent in bacteria, which exhibit ATP synthase monomers (PDB ID: 6OQR) lacking membrane bending capabilities compared to the dimeric form (Daum et al., 2013; Paumard et al., 2002). (B) AlphaFold 2 structural depictions of the conserved C-terminal mitofilin domains of human Mic60 (Uniprot ID: Q16891, 562–758) and the putative Cereibacter sphaeroides Mic60 homolog (Uniprot ID: Q3J6D4, 270–433), adapted from Benning et al. (2024) preprint. (C) At CJs, OPA1 and MICOS interact to tighten the junction, giving rise to negative curvature. Bacteria lack OPA1, but some alphaproteobacteria like Cereibacter sphaeroides retain homologs of Mic60, which could presumably account for some curvature at ICM–IM junctions. We speculate that despite the absence of ATP synthase dimerization, the presence of a Mic60 homolog creates the bulbous appearance of ICMs observed in many alphaproteobacteria, as junctions retain some tightness while curvature at ICM tips is absent. MTS, mitochondrial targeting signal; CM, cristae membrane; OM, outer membrane; IM, inner membrane.

Close modal

The interplay between positive and negative curvatures at cristae tips and CJs, respectively, could be the key to understanding the structural transitions between ICMs and cristae during eukaryogenesis. Based on the evidence summarized above, prokaryotic ICMs, particularly those with vesicular topologies, likely exhibit low positive curvature at ICM tips as a result of the reduced membrane bending capabilities and curvature generation of monomeric ATP synthase compared to the dimeric form (Daum et al., 2013; Davies et al., 2012; Paumard et al., 2002). ICMs might still exhibit negative curvature from Mic60 homologs at ICM–IM junctions, which could explain the appearance of bulbous ICM architectures in some alphaproteobacteria (Fig. 2C). However, this argument is complicated by the presence of long-lamellar and tubular type prokaryotic ICMs, such as those in R. palustris and D. carbinolicus, respectively, which might have curvature properties more comparable to those of mitochondrial cristae. An additional confounding factor is the presence of alternative curvature-generating protein factors in prokaryotic ICMs, such as the light harvesting complexes LH1 and LH2, which have been shown to induce positive curvature on specific photosynthetic ICM invaginations known as chromatophores (Chandler et al., 2008).

During mitochondrial evolution, OPA1-induced membrane curvature could have facilitated the oligomerization of ATP synthase (Quintana-Cabrera et al., 2018) and stabilized CJs by physically interacting with the MICOS complex (Glytsou et al., 2016; Schweppe et al., 2017). However, studies in mammalian cells have shown that CJs can still form in the absence of OPA1 (Barrera et al., 2016), suggesting that negative curvature at CJs might have preceded the incidence of OPA1, and that MICOS might be the primary driver of CJ formation whereas OPA1 is a key regulator of overall cristae shape. Notably absent from this model are roles for curvature-inducing mitochondrial glycerophospholipids – which vary significantly between prokaryotes and mitochondria – in shaping the formation of high-curvature cristae structures.

Mitochondria exhibit several PLs whose characteristics differ from those found in other organelles. A well-known illustration of this is the presence of CL, which is exclusively synthesized and localized in the IMM. CL is unique among PLs in that it contains four acyl chains linked by two glycerol-phosphate moieties (LeCocq and Ballou, 1964). This distinctive molecular geometry confers biophysical properties that fundamentally influence membrane organization and dynamics within mitochondria. Biophysical studies have demonstrated that membrane curvature affects CL distribution, with CL showing pronounced enrichment in regions of high negative curvature (Beltrán-Heredia et al., 2019). This spatial organization reflects how CL structure enables efficient packing in curved membranes. Recent quantitative analyses reveal that CL exhibits stronger curvature-dependent sorting than other non-bilayer phospholipids like PE (Golla et al., 2024), suggesting a role for CL in stabilizing cristae through preferential accumulation at curved regions.

The abundance of CL in eukaryotes varies significantly across organisms and even within tissues. Studies from S. cerevisiae have reported that CL constitutes between 8–10% of total mitochondrial PLs (Baile et al., 2014; Basu Ball et al., 2018b; Claypool et al., 2011; Venkatraman et al., 2023), whereas analyses in rat liver mitochondria report levels closer to 15% (Daum, 1985; Horvath and Daum, 2013) (Fig. 3A). By contrast, CL seems to be less prevalent in bacterial membranes, constituting ∼5% of total PLs in E. coli (Fig. 3A) (Budin et al., 2018; Rowlett et al., 2017). CL is also found in many alphaproteobacteria (Sohlenkamp and Geiger, 2016). For instance, CL has been detected in Cereibacter sphaeroides, Rhizobium tropici and Agrobacterium tumefaciens at abundances between 2% and 5% of total PLs (Czolkoss et al., 2016; Lin et al., 2015; Vences-Guzmán et al., 2011), with one study reporting above 10% CL in Rhizobium meliloti (Thompson et al., 1983). Some non-alphaproteobacterial genera also display very high CL abundances, with it being above 10% of total PLs in Legionella pneumophila (Conover et al., 2008) and 30% in Xanthomonas campestris (Moser et al., 2014); however, it remains unclear how these increased CL levels contribute to membrane biogenesis and function.

Fig. 3.

Lipid biosynthesis demarcates differences between bacterial and mitochondrial membranes. (A) In E. coli and the alphaproteobacterial Cereibacter sphaeroides, PE (yellow) and PG (gray) are the major PL constituents and CL (red) is present in low quantities. PC (blue) is absent from E. coli but is present in various alphaproteobacterial lipidomes, including in Cereibacter sphaeroides, although notably with lower abundance than in mammalian cells. CL levels significantly increase in eukaryotic mitochondria, particularly in mammals, accompanied by major reductions in PE and PG. PC is the most abundant PL in eukaryotic mitochondria. Lipidomics data obtained from Budin et al. (2018), Venkatraman et al. (2023), and Horvath and Daum (2013) for E. coli whole cells, and mitochondria isolated from S. cerevisiae and rat liver, respectively. (B) Unsaturated fatty acids are selectively driven toward synthesis of PE and CL in mitochondria. In E. coli, PE, CL and PG exhibit identical levels of unsaturation, whereas PE and CL are maximally unsaturated in S. cerevisiae mitochondria, as denoted by a double bond index (DBI; which describes the mean unsaturation per acyl chain) close to 1. In Drosophila melanogaster and Mus musculus heart, CL exhibits nearly homogenous, tetra-linoleic (C18:2)4 acyl chains (DBI close to 2). Lipidomics data obtained from Budin et al. (2018), Venkatraman et al. (2023) and Zhu et al. (2021) for E. coli (n=3), S. cerevisiae (n=3) and M. musculus (n=5), respectively. D. melanogaster (n=1) lipidomics were completed on whole flies. Error bars indicate s.d. (C) PL biosynthesis in bacteria versus mitochondria primarily differs in biosynthesis of CL. CL is synthesized by two pathways in E. coli, both catalyzed by a phospholipase D (PLD)-type CL synthase – from a phosphatidyl transfer either between two PG molecules, via ClsA or ClsB, or from PE to PG, via ClsC. In contrast, in a process restricted to eukaryotes, CL is synthesized from a phosphatidyl transfer from CDP-DAG to the free hydroxyl of the PG to form de novo CL, which is then remodeled in two-steps by a deacylation (by Cld1 in yeast and multiple iPLA2 enzymes in mammals) and transacylation (by Taz1 in yeast and tafazzin in mammals) to form homogeneously unsaturated CL. The decarboxylation of PS (orange) into PE is catalyzed by enzymes conserved between bacteria and mitochondria: PISD in humans and Psd in E. coli. Similarly, PGP (cyan) is dephosphorylated to form PG in both mitochondria and bacteria, but the phosphatases that catalyze this reaction differ. (D) Structural similarities and divergences based on calculated root mean square deviations (RMSD) between phospholipid metabolic enzymes from mitochondria and bacteria. RMSD values are calculated using atomic distances between superimposed structures, with lower RMSD values indicating higher degrees of structural similarity. AlphaFold 2 structural depictions are shown for human PISD (Uniprot ID: Q9UG56), E. coli Psd (Uniprot ID: P0A8K1), human PG synthase (PTPMT1, Uniprot ID: Q8WUK0) and one of three PGP phosphatases of E.coil (PgpA, Uniprot ID: P18200). CL synthases carry out different reactions in bacteria and mitochondria and their enzymes are not homologous. Shown are ClsA from E. coli (Uniprot ID: P0A6H8) and human CRLS1 (Uniprot ID: Q9UJA2).

Fig. 3.

Lipid biosynthesis demarcates differences between bacterial and mitochondrial membranes. (A) In E. coli and the alphaproteobacterial Cereibacter sphaeroides, PE (yellow) and PG (gray) are the major PL constituents and CL (red) is present in low quantities. PC (blue) is absent from E. coli but is present in various alphaproteobacterial lipidomes, including in Cereibacter sphaeroides, although notably with lower abundance than in mammalian cells. CL levels significantly increase in eukaryotic mitochondria, particularly in mammals, accompanied by major reductions in PE and PG. PC is the most abundant PL in eukaryotic mitochondria. Lipidomics data obtained from Budin et al. (2018), Venkatraman et al. (2023), and Horvath and Daum (2013) for E. coli whole cells, and mitochondria isolated from S. cerevisiae and rat liver, respectively. (B) Unsaturated fatty acids are selectively driven toward synthesis of PE and CL in mitochondria. In E. coli, PE, CL and PG exhibit identical levels of unsaturation, whereas PE and CL are maximally unsaturated in S. cerevisiae mitochondria, as denoted by a double bond index (DBI; which describes the mean unsaturation per acyl chain) close to 1. In Drosophila melanogaster and Mus musculus heart, CL exhibits nearly homogenous, tetra-linoleic (C18:2)4 acyl chains (DBI close to 2). Lipidomics data obtained from Budin et al. (2018), Venkatraman et al. (2023) and Zhu et al. (2021) for E. coli (n=3), S. cerevisiae (n=3) and M. musculus (n=5), respectively. D. melanogaster (n=1) lipidomics were completed on whole flies. Error bars indicate s.d. (C) PL biosynthesis in bacteria versus mitochondria primarily differs in biosynthesis of CL. CL is synthesized by two pathways in E. coli, both catalyzed by a phospholipase D (PLD)-type CL synthase – from a phosphatidyl transfer either between two PG molecules, via ClsA or ClsB, or from PE to PG, via ClsC. In contrast, in a process restricted to eukaryotes, CL is synthesized from a phosphatidyl transfer from CDP-DAG to the free hydroxyl of the PG to form de novo CL, which is then remodeled in two-steps by a deacylation (by Cld1 in yeast and multiple iPLA2 enzymes in mammals) and transacylation (by Taz1 in yeast and tafazzin in mammals) to form homogeneously unsaturated CL. The decarboxylation of PS (orange) into PE is catalyzed by enzymes conserved between bacteria and mitochondria: PISD in humans and Psd in E. coli. Similarly, PGP (cyan) is dephosphorylated to form PG in both mitochondria and bacteria, but the phosphatases that catalyze this reaction differ. (D) Structural similarities and divergences based on calculated root mean square deviations (RMSD) between phospholipid metabolic enzymes from mitochondria and bacteria. RMSD values are calculated using atomic distances between superimposed structures, with lower RMSD values indicating higher degrees of structural similarity. AlphaFold 2 structural depictions are shown for human PISD (Uniprot ID: Q9UG56), E. coli Psd (Uniprot ID: P0A8K1), human PG synthase (PTPMT1, Uniprot ID: Q8WUK0) and one of three PGP phosphatases of E.coil (PgpA, Uniprot ID: P18200). CL synthases carry out different reactions in bacteria and mitochondria and their enzymes are not homologous. Shown are ClsA from E. coli (Uniprot ID: P0A6H8) and human CRLS1 (Uniprot ID: Q9UJA2).

Close modal

CL fulfills some similar functions in prokaryotes and eukaryotes; it binds to and stabilizes ETC complexes in both eukaryotes (Mehdipour and Hummer, 2016; Mühleip et al., 2019; Mühleip et al., 2023; Pfeiffer et al., 2003) and prokaryotes (Arias-Cartin et al., 2012). Work from our group in S. cerevisiae has demonstrated the essentiality of CL in shaping cristae structures under conditions of reduced assembly of ATP synthase dimers (Venkatraman and Budin, 2024). This suggests that CL contributes independently to cristae morphology, potentially by relaxing stress that arises from large negative-curvature regions (Beltrán-Heredia et al., 2019; Venkatraman et al., 2023). Intriguingly, modulation of local pH is sufficient to produce cristae-like membrane invaginations in giant unilamellar vesicles in a CL-dependent manner. This phenomenon likely results from a change in CL packing in the monolayer when exposed to more protons (Khalifat et al., 2008, 2011). In line with these observations, several studies have also shown the curvature-based sorting of CL in bacteria (Kawai et al., 2004; Mileykovskaya and Dowhan, 2000; Renner and Weibel, 2011). In parallel, recent investigations have revealed a synergistic dependency between CL and ATP synthase for the formation of ICMs in E. coli, in which ICMs do not naturally form, but can be induced upon ATP synthase subunit b overexpression (Carranza et al., 2017). In that study, the loss of CL led to the production of onion-like multi-lamellar ICM structures at the cell periphery rather than long lamellar ICMs throughout the cytoplasm. Taken together, the biophysical contributions of CL and its interactions with ETC enzymes and ATP synthase imply that this lipid has played a key role in the development of cristae-like inner membrane shapes during eukaryogenesis.

Although the abundance and functions of CL likely increased during mitochondrial evolution, PE and phosphatidylglycerol (PG) levels decreased, highlighting key distinctions between bacterial and mitochondrial lipidomes (Fig. 3A). For example, in mitochondria, PG is synthesized strictly as a substrate for CL synthesis and does not itself accumulate to significant levels (Osman et al., 2011). Furthermore, although absent in many bacteria including E. coli, phosphatidylcholine (PC) is the most abundant mitochondrial PL, comprising over 40% of total mitochondrial PLs (Fig. 3A) (Daum, 1985; Geiger et al., 2013). Interestingly, although E. coli lacks detectable PC, alphaproteobacteria, such as Cereibacter sphaeroides and Methylobacterium organophilum, exhibit PC levels that are close to 20% of total PLs (Benning et al., 1993; Donohue et al., 1982; Patt and Hanson, 1978) (Fig. 3A). PC synthesis is a common reaction in alphaproteobacteria, as exemplified in Sinorhizobium meliloti and other relatives (de Rudder et al., 1999; Martínez-Morales et al., 2003). However, in contrast to what occurs in eukaryotes, bacterial PC synthesis couples free choline to cytidine diphosphate (CDP)-diacyl glycerol (DAG), instead of CDP-choline as in the eukaryotic Kennedy pathway. The PE:PC ratio in mitochondria is also much lower than the ratios measured in PC-producing alphaproteobacteria. Strains of Cereibacter sphaeroides exhibit high (>2) PE:PC ratios (Donohue et al., 1982), but in mammalian mitochondria the ratio is about 0.8 (Horvath and Daum, 2013) (Fig. 3A). The IMM has nearly twice the PE:PC ratio of the OMM (1.15 versus 0.64, respectively) (Hovius et al., 1990), which likely supports a requirement of PE for bioenergetic activity and cristae architecture (Basu Ball et al., 2018a; Calzada et al., 2016; van der Veen et al., 2017). In addition to these differences in PE and PC abundances, PG is a major PL (≈35%) of Cereibacter sphaeroides and other alphaproteobacteria (Fig. 3A) (Benning et al., 1993; Donohue et al., 1982; Rowlett et al., 2017) but shows only trace detection in mitochondria. This alteration could potentially be attributed to increased demand for CL production within mitochondria, which has relegated PG to a transient intermediate in CL synthesis (Osman et al., 2011). It has been suggested that PG can compensate for several functions of CL when it accumulates upon ablation of CL synthase in S. cerevisiae (Jiang et al., 2000), potentially supporting this ancestral role.

In addition to altered head group chemistries, bacterial and mitochondrial membranes differ in their fatty acid compositions. Mitochondria are enriched in unsaturated PLs and exhibit low levels of saturated PLs, even upon genetic inhibition of desaturases (Venkatraman et al., 2023). Increasing acyl chain unsaturation is correlated with increased spontaneous curvature in a variety of PLs (Dymond, 2021; Venkatraman et al., 2024). The unsaturated fatty acid pool within mitochondria is shunted towards nonbilayer-preferring PE and CL lipid species, which, in their fully unsaturated forms, are thought to provide the necessary curvature for cristae formation (Basu Ball et al., 2018a). PL acyl chain compositions are described by their double bond index (DBI), the mean number of unsaturations per acyl chain (Vornanen et al., 1999; Winnikoff et al., 2021). In S. cerevisiae mitochondria, which cannot synthesize polyunsaturated fatty acids, the predominant CL and PE species are monounsaturated on each acyl chain (with a DBI close to 1), whereas the CL precursor, PG, predominantly contains one monounsaturated and one saturated acyl chain (DBI≈0.6) (Fig. 3B). E. coli membranes display increased levels of saturation, and PG, PE and CL species exhibit nearly identical acyl chain profiles, suggesting a lack of PL specificity in unsaturated fatty acyl flux in bacterial membranes. In eukaryotic mitochondria, selective unsaturation of PE might be derived from preferential import of unsaturated phosphatidylserine (PS) at ER–mitochondria contact sites for PE synthesis by phosphatidylserine decarboxylase (PSD, called Psd1 in yeast and PISD in mammals) (Heikinheimo and Somerharju, 1998, 2002; Renne et al., 2022). In eukaryotes, the high level of unsaturation in CL is attributed to a two-step remodeling pathway in which CL is first deacylated by a phospholipase A2 (Cld1 in yeast, multiple PLA2 enzymes in mammals) before a transacylase transfers unsaturated fatty acyl chains from PC or PE to CL in multiple steps to attain homogeneously unsaturated CL (Abe et al., 2016; Schlame et al., 2012, 2017). In mammals, which can synthesize polyunsaturated fatty acids, CL acyl chains are typically linoleic (18:2, a C18 chain with two unsaturations), and thus have a DBI close to 2 (Oemer et al., 2018, 2020; Schlame et al., 2005) (Fig. 3B). The enzymes involved in the two-step remodeling of CL (deacylation-reacylation) are absent in alphaproteobacteria and other prokaryotes but are also not ubiquitous in eukaryotes, as certain unicellular protists and fungi lack homologs of both PLA2 deacylation enzymes and the best-characterized CL transacylase, tafazzin (Taz1 in yeast) (Tian et al., 2012). Although studies reporting CL acyl chain compositions from alphaproteobacteria are limited, a study in Agrobacterium has shown that CL exhibits slightly more unsaturated fatty acyl species than the total fatty acid pool (Czolkoss et al., 2016), which might indicate alternative remodeling machinery in alphaproteobacteria. Further studies are thus necessary to elucidate the origins of CL remodeling and their comparative roles in alphaproteobacteria and eukaryotes.

The relationship between oxygen utilization during eukaryogenesis and cristae shape might be linked by adaptations in unsaturation levels. According to some models, the incidence of early protomitochondria occurred after a surge in atmospheric oxygen 2.4 billion years ago (de Duve, 2007; Hall, 1973; Mills et al., 2022), albeit to levels much lower than those of today. This event likely coincided with emergence of a capacity for aerobic respiration in cells and concurrently the formation of invaginated cristae-like membranes. The direct interplay between cristae biogenesis and oxygen consumption is not fully understood but is thought to be driven by ETC-based changes (Fuhrmann and Brüne, 2017). Lipid unsaturation is also a key regulator of cristae structure and electron carrier diffusion in the ETC (Budin et al., 2018). The enzymes that desaturate acyl chains in eukaryotes, such as yeast Ole1 or mammalian SCD1, are oxygen dependent (Kwast et al., 1999; Vasconcelles et al., 2001), and their inhibition in hypoxic environments increases lipid saturation levels (Ackerman et al., 2018; Kamphorst et al., 2013; Venkatraman et al., 2023). By contrast, some bacteria such as E. coli produce unsaturated fatty acids anaerobically during de novo fatty acid biosynthesis (Cronan, 2024; Cronan and Thomas, 2009) but are more limited in their compositional diversity. Oxygen limitation in S. cerevisiae cells, which are specialized for microaerobic fermentation, increases total PL saturation but also drives a dependency on CL synthesis for maintenance of cristae structure (Venkatraman and Budin, 2024). PL acyl chain composition in this system better mimics the more saturated lipidomes of bacteria, and we posit that the requirement of CL for cristae formation under these conditions might imply an early role for CL in shaping cristae or ICMs under reduced oxygenation, which could be tested by genetic deletion of CL synthesis in ICM-forming alphaproteobacteria. The subsequent proliferation of highly unsaturated mitochondrial membranes could have been dictated by the increase in oxygenation of the earth over the past billion years.

Mitochondria harbor machinery to synthesize a portion of the PLs that make up their membranes. Biosynthesis for PE, PG and CL all occur in the IMM. Although a portion of cellular PE is produced in the ER (Kennedy and Weiss, 1956), mitochondrial PE is made from imported PS, which is decarboxylated by Psd1 or PISD (Fig. 3C) (Acoba et al., 2020; Horvath et al., 2012). Analogously in E. coli, a PSD (Psd) conducts a reaction identical to that in eukaryotes to produce PE, but PE can also be derived from CDP-ethanolamine in an alternative pathway (Sohlenkamp and Geiger, 2016). Both bacterial and eukaryotic PSDs are initially synthesized as inactive proenzymes (Schuiki and Daum, 2009). They exhibit sequence and structural homology (Fig. 3D), exemplified by their conserved C-terminal LGST motif, which marks the autocatalytic cleavage site necessary for PSD enzymatic activity (Cho et al., 2021; Schuiki and Daum, 2009; Voelker, 1997).

In mitochondria, PG is synthesized as a precursor to CL, both of which are derived from CDP-DAG that originates from ER-supplied phosphatidic acid (PA). PG synthesis in both mitochondria and prokaryotes occurs via a PG phosphate intermediate generated from CDP-DAG (Chang et al., 1998; Gopalakrishnan et al., 1986). In bacterial cells, three phosphatases (PgpA, PgpB and PgpC) catalyze the dephosphorylation of phosphatidylglycerol phosphatase (PGP) to form PG (Lu et al., 2011), whereas the phosphatases PTPMT1 and Gep4 conduct identical reactions in mammals and yeast, respectively (Osman et al., 2010; Zhang et al., 2011) (Fig. 3C). Although bacterial PgpA and PgpB enzymes do not show structural or sequence homology with Gep4 or PTPMT1 (Fig. 3D), mitochondrially targeted PgpA has been shown to functionally compensate for Gep4 deficiency in S. cerevisiae, indicating functional conservation of PG dephosphorylation between prokaryotes and mitochondria (Osman et al., 2010). In bacteria, PG receives a phosphatidyl group from another PG molecule to form CL (Schlame, 2008); this reaction is catalyzed by a phospholipase D (PLD) enzyme (ClsA or ClsB) (Hirschberg and Kennedy, 1972). More recently, another member of the PLD family, ClsC, has been shown to catalyze the transfer of a phosphatidyl group from PE to PG to form CL (Tan et al., 2012). In contrast, in eukaryotes, CL synthase (CRLS1 in mammals, Crd1 in yeast) transfers a phosphatidyl group from CDP-DAG to PG to form CL, a reaction that occurs in the matrix-facing side of the IMM (Fig. 3C) (Hostetler et al., 1971, 1972; Schlame and Haldar, 1993). Reflecting the different enzymatic reactions they conduct, eukaryotic and bacterial CL synthases are not homologous (Fig. 3D).

Phylogenetic analyses have revealed the presence of bacterial-type CL synthases in several eukaryotic groups, including Alveolata and Kinetoplastids (Serricchio and Bütikofer, 2012; Tian et al., 2012). Interestingly, although most prokaryotes exhibit PLD-type CL synthases, some alphaproteobacteria bear both bacterial and eukaryotic-type CL synthesis machinery, suggesting that proto-mitochondria might also have borne both CL synthesis mechanisms (Geiger et al., 2023). Additional biochemical, lipidomic and phylogenetic analyses are required to further link CL synthesis to the metabolic state of the proto-mitochondrion and to better understand how mitochondrial and bacterial CL pathways diverged.

The advent of extensive metagenomic, phylogenetic and molecular biology tools have already advanced our understanding of mitochondrial origins. However, several questions remain regarding the energetics of the proto-mitochondrion, its interactions with the host cell and the chronology of the endosymbiotic event. Inferring the characteristics of the specific alphaproteobacterial ancestor of mitochondria using phylogenetic tools has been central in efforts to answer these questions, but substantial debate remains (Brindefalk et al., 2011; Degli Esposti et al., 2014; Muñoz-Gómez et al., 2022; Rodríguez-Ezpeleta and Embley, 2012; Roger et al., 2017). Recent discoveries regarding the alphaproteobacterial origins of Mic60, the major subunit of the cristae-shaping MICOS complex (Huynen et al., 2016; Muñoz-Gómez et al., 2015a,b, 2022, 2023) and the identification of cristae-like ICM invaginations in bacteria (Degli Esposti, 2014; Muñoz-Gómez et al., 2017) have reinvigorated interest in cristae evolution and its pre-endosymbiotic origins. Coupled with phylogenetic analyses, a systematic study of cristae-like structures in candidate alphaproteobacteria and their relationship to respiratory function could be invaluable in identifying the metabolic state of the proto-mitochondrion. Similarly, discerning the molecular determinants of ICM formation, as have been reported for mitochondrial cristae (Cogliati et al., 2016; Pánek et al., 2020), would also provide a framework for understanding how eukaryotes became specialized for aerobic respiration. To this end, the application of high-resolution 3D imaging techniques, such as cryo-electron tomography and focused ion beam scanning electron microscopy (FIB-SEM), to ICM structures will further elucidate their geometric features. These approaches will be needed to understand specific types of ICM topologies (i.e, lamellar or tubular) and their roles in ATP generation, as is now routine for analyses of mitochondrial cristae (Barad et al., 2023; Bílý et al., 2021; Garcia et al., 2019, 2023; Lee et al., 2020; Mendelsohn et al., 2022; Stephan et al., 2020; Suga et al., 2023; Venkatraman et al., 2023).

The identification and characterization of conserved mitochondrial proteins originating from alphaproteobacteria has shed light on the protein repertoire of the proto-mitochondrion, which might provide insight into its energetic state (Andersson et al., 1998; Gabaldón and Huynen, 2004; Gray, 2015). However, these comparisons are complicated by dilution of the phylogenetic signal between bacterial and mitochondrial protein homologs and the differential loss of ancestral alphaproteobacterial genes from mitochondrial genomes, contributing to the small number of conserved proteins encoded in both genomes (Geiger et al., 2023; Kurland and Andersson, 2000; Nagies et al., 2020; Raval et al., 2023). An alternative area of interest comes from comparative analyses of mitochondrial and alphaproteobacterial lipidomes, as we have reviewed here. The determination of lipidic features in the proto-mitochondrion could turn out to be pivotal in depicting its energetic state. In this regard, particular attention should be directed toward the elucidation of evolutionary history of the complete biosynthetic pathways leading to PLs such as PE and CL, which provide indispensable functions in the mitochondria as well as in many alphaproteobacteria. Although phylogenetic analyses have demonstrated the alphaproteobacterial origins of CL synthesis enzymes (Geiger et al., 2023; Tian et al., 2012), further studies could reveal links between membrane lipid composition and the presence of aerobic traits, ICM formation or even the acquisition of more diverse organelles. Although the lipidomes of mitochondria (from yeast and mammals) and E. coli are well characterized and provide initial insights into lipidic adaptations during eukaryogenesis, more extensive lipidomic analyses from diverse alphaproteobacteria are required to explain the transition. In a complementary manner, similar investigations are needed in Asgard archaea to elucidate how distinct lipid metabolisms merged within a single cell while maintaining compartments with distinct lipid compositions and architecture over time. By testing links between lipidic adaptation, phylogenetics delineating aerobic or anaerobic traits and ICM formation in alphaproteobacteria, models for mitochondrial origins could be further developed.

The authors would like to thank Guy Perkins for providing tomography data. Xi Fang provided lipidomic data. Marc Morizono provided helpful discussions and assisted with figures.

Funding

K.V. was supported by the National Institutes of Health (NIH) Molecular Biophysics Training Grant (T32-GM008326C). The Gordon and Betty Moore Foundation Moore–Simons Project on the Origin of the Eukaryotic Cell (GBMF9734, grant doi:10.37807/GBMF9734 to I.B.) and the National Institutes of Health (GM142960 to I.B.) provided financial support. Open access funding provided by University of California. Deposited in PMC for immediate release.

Special Issue

This article is part of the Special Issue ‘Cell Biology of Mitochondria’, guest edited by Ana J. Garcia-Saez and Heidi McBride. See related articles at https://journals.biologists.com/jcs/issue/138/9.

Aaltonen
,
M. J.
,
Friedman
,
J. R.
,
Osman
,
C.
,
Salin
,
B.
,
di Rago
,
J.-P.
,
Nunnari
,
J.
,
Langer
,
T.
and
Tatsuta
,
T.
(
2016
).
MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria
.
J. Cell Biol.
213
,
525
-
534
.
Abe
,
M.
,
Hasegawa
,
Y.
,
Oku
,
M.
,
Sawada
,
Y.
,
Tanaka
,
E.
,
Sakai
,
Y.
and
Miyoshi
,
H.
(
2016
).
Mechanism for remodeling of the acyl chain composition of cardiolipin catalyzed by saccharomyces cerevisiae tafazzin
.
J. Biol. Chem.
291
,
15491
-
15502
.
Abhishek
,
A.
,
Bavishi
,
A.
,
Bavishi
,
A.
and
Choudhary
,
M.
(
2011
).
Bacterial genome chimaerism and the origin of mitochondria
.
Can. J. Microbiol.
57
,
49
-
61
.
Ackerman
,
D.
,
Tumanov
,
S.
,
Qiu
,
B.
,
Michalopoulou
,
E.
,
Spata
,
M.
,
Azzam
,
A.
,
Xie
,
H.
,
Simon
,
M. C.
and
Kamphorst
,
J. J.
(
2018
).
Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation
.
Cell Rep.
24
,
2596
-
2605.e5
.
Acoba
,
M. G.
,
Senoo
,
N.
and
Claypool
,
S. M.
(
2020
).
Phospholipid ebb and flow makes mitochondria go
.
J. Cell Biol.
219
,
e202003131
.
Andersson
,
S. G.
,
Zomorodipour
,
A.
,
Andersson
,
J. O.
,
Sicheritz-Pontén
,
T.
,
Alsmark
,
U. C.
,
Podowski
,
R. M.
,
Näslund
,
A. K.
,
Eriksson
,
A. S.
,
Winkler
,
H. H.
and
Kurland
,
C. G.
(
1998
).
The genome sequence of Rickettsia prowazekii and the origin of mitochondria
.
Nature
396
,
133
-
140
.
Aouad
,
M.
,
Flandrois
,
J.-P.
,
Jauffrit
,
F.
,
Gouy
,
M.
,
Gribaldo
,
S.
and
Brochier-Armanet
,
C.
(
2022
).
A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea
.
BMC Ecol. Evol.
22
,
1
.
Arechaga
,
I.
,
Miroux
,
B.
,
Karrasch
,
S.
,
Huijbregts
,
R.
,
de Kruijff
,
B.
,
Runswick
,
M. J.
and
Walker
,
J. E.
(
2000
).
Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase
.
FEBS Lett.
482
,
215
-
219
.
Arias-Cartin
,
R.
,
Grimaldi
,
S.
,
Arnoux
,
P.
,
Guigliarelli
,
B.
and
Magalon
,
A.
(
2012
).
Cardiolipin binding in bacterial respiratory complexes: structural and functional implications
.
Biochim. Biophys. Acta
1817
,
1937
-
1949
.
Baile
,
M. G.
,
Sathappa
,
M.
,
Lu
,
Y.-W.
,
Pryce
,
E.
,
Whited
,
K.
,
Michael McCaffery
,
J.
,
Han
,
X.
,
Alder
,
N. N.
and
Claypool
,
S. M.
(
2014
).
Unremodeled and Remodeled Cardiolipin Are Functionally Indistinguishable in Yeast
.
J. Biol. Chem.
289
,
1768
-
1778
.
Ban
,
T.
,
Ishihara
,
T.
,
Kohno
,
H.
,
Saita
,
S.
,
Ichimura
,
A.
,
Maenaka
,
K.
,
Oka
,
T.
,
Mihara
,
K.
and
Ishihara
,
N.
(
2017
).
Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin
.
Nat. Cell Biol.
19
,
856
-
863
.
Barad
,
B. A.
,
Medina
,
M.
,
Fuentes
,
D.
,
Wiseman
,
R. L.
and
Grotjahn
,
D. A.
(
2023
).
Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline
.
J. Cell Biol.
222
,
e202204093
.
Barrera
,
M.
,
Koob
,
S.
,
Dikov
,
D.
,
Vogel
,
F.
and
Reichert
,
A. S.
(
2016
).
OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation
.
FEBS Lett.
590
,
3309
-
3322
.
Basu Ball
,
W.
,
Neff
,
J. K.
and
Gohil
,
V. M.
(
2018a
).
The role of nonbilayer phospholipids in mitochondrial structure and function
.
FEBS Lett.
592
,
1273
-
1290
.
Basu Ball
,
W.
,
Baker
,
C. D.
,
Neff
,
J. K.
,
Apfel
,
G. L.
,
Lagerborg
,
K. A.
,
Žun
,
G.
,
Petrovič
,
U.
,
Jain
,
M.
and
Gohil
,
V. M.
(
2018b
).
Ethanolamine ameliorates mitochondrial dysfunction in cardiolipin-deficient yeast cells
.
J. Biol. Chem.
293
,
10870
-
10883
.
Beltrán-Heredia
,
E.
,
Tsai
,
F.-C.
,
Salinas-Almaguer
,
S.
,
Cao
,
F. J.
,
Bassereau
,
P.
and
Monroy
,
F.
(
2019
).
Membrane curvature induces cardiolipin sorting
.
Commun. Biol.
2
,
225
.
Benning
,
C.
,
Beatty
,
J. T.
,
Prince
,
R. C.
and
Somerville
,
C. R.
(
1993
).
The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation
.
Proc. Natl. Acad. Sci. USA
90
,
1561
-
1565
.
Benning
,
F. M. C.
,
Bell
,
T. A.
,
Nguyen
,
T. H.
,
Syau
,
D.
,
Connell
,
L. B.
,
da Costa
,
C. J. B.
and
Chao
,
L. H.
(
2024
).
Ancestral sequence reconstruction of Mic60 reveals a residue signature supporting respiration in yeast
.
bioRxiv
,
2024.04.26.591372
.
Bílý
,
T.
,
Sheikh
,
S.
,
Mallet
,
A.
,
Bastin
,
P.
,
Pérez-Morga
,
D.
,
Lukeš
,
J.
and
Hashimi
,
H.
(
2021
).
Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei
.
J. Eukaryot. Microbiol.
68
,
e12846
.
Blum
,
T. B.
,
Hahn
,
A.
,
Meier
,
T.
,
Davies
,
K. M.
and
Kühlbrandt
,
W.
(
2019
).
Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows
.
Proc. Natl. Acad. Sci. USA
116
,
4250
-
4255
.
Bonen
,
L.
,
Cunningham
,
R. S.
,
Gray
,
M. W.
and
Doolittle
,
W. F.
(
1977
).
Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature
.
Nucleic Acids Res.
4
,
663
-
671
.
Brindefalk
,
B.
,
Ettema
,
T. J. G.
,
Viklund
,
J.
,
Thollesson
,
M.
and
Andersson
,
S. G. E.
(
2011
).
A phylometagenomic exploration of oceanic alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade
.
PLoS ONE
6
,
e24457
.
Budin
,
I.
,
de Rond
,
T.
,
Chen
,
Y.
,
Chan
,
L. J. G.
,
Petzold
,
C. J.
and
Keasling
,
J. D.
(
2018
).
Viscous control of cellular respiration by membrane lipid composition
.
Science
362
,
1186
-
1189
.
Burger
,
G.
,
Gray
,
M. W.
,
Forget
,
L.
and
Lang
,
B. F.
(
2013
).
Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists
.
Genome Biol. Evol.
5
,
418
-
438
.
Calzada
,
E.
,
Onguka
,
O.
and
Claypool
,
S. M.
(
2016
).
Phosphatidylethanolamine metabolism in health and disease
.
Int. Rev. Cell Mol. Biol.
321
,
29
-
88
.
Camara
,
A. K. S.
,
Zhou
,
Y.
,
Wen
,
P.-C.
,
Tajkhorshid
,
E.
and
Kwok
,
W.-M.
(
2017
).
Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target
.
Front. Physiol.
8
,
460
.
Carranza
,
G.
,
Angius
,
F.
,
Ilioaia
,
O.
,
Solgadi
,
A.
,
Miroux
,
B.
and
Arechaga
,
I.
(
2017
).
Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli
.
Biochim. Biophys. Acta
1859
,
1124
-
1132
.
Chandler
,
D. E.
,
Hsin
,
J.
,
Harrison
,
C. B.
,
Gumbart
,
J.
and
Schulten
,
K.
(
2008
).
Intrinsic curvature properties of photosynthetic proteins in chromatophores
.
Biophys. J.
95
,
2822
-
2836
.
Chang
,
S. C.
,
Heacock
,
P. N.
,
Clancey
,
C. J.
and
Dowhan
,
W.
(
1998
).
The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae
.
J. Biol. Chem.
273
,
9829
-
9836
.
Cho
,
G.
,
Lee
,
E.
and
Kim
,
J.
(
2021
).
Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis
.
Sci. Rep.
11
,
5785
.
Claypool
,
S. M.
,
Whited
,
K.
,
Srijumnong
,
S.
,
Han
,
X.
and
Koehler
,
C. M.
(
2011
).
Barth syndrome mutations that cause tafazzin complex lability
.
J. Cell Biol.
192
,
447
-
462
.
Cogliati
,
S.
,
Enriquez
,
J. A.
and
Scorrano
,
L.
(
2016
).
Mitochondrial cristae: where beauty meets functionality
.
Trends Biochem. Sci.
41
,
261
-
273
.
Conover
,
G. M.
,
Martinez-Morales
,
F.
,
Heidtman
,
M. I.
,
Luo
,
Z.-Q.
,
Tang
,
M.
,
Chen
,
C.
,
Geiger
,
O.
and
Isberg
,
R. R.
(
2008
).
Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants
.
Cell. Microbiol.
10
,
514
-
528
.
Cronan
,
J. E.
(
2024
).
Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways
.
Biochimie
218
,
137
-
151
.
Cronan
,
J. E.
and
Thomas
,
J.
(
2009
).
Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways
.
Methods Enzymol.
459
,
395
-
433
.
Czolkoss
,
S.
,
Fritz
,
C.
,
Hölzl
,
G.
and
Aktas
,
M.
(
2016
).
Two distinct cardiolipin synthases operate in agrobacterium tumefaciens
.
PLoS ONE
11
,
e0160373
.
Dacks
,
J. B.
,
Field
,
M. C.
,
Buick
,
R.
,
Eme
,
L.
,
Gribaldo
,
S.
,
Roger
,
A. J.
,
Brochier-Armanet
,
C.
and
Devos
,
D. P.
(
2016
).
The changing view of eukaryogenesis - fossils, cells, lineages and how they all come together
.
J. Cell Sci.
129
,
3695
-
3703
.
Daum
,
G.
(
1985
).
Lipids of mitochondria
.
Biochim. Biophys. Acta
822
,
1
-
42
.
Daum
,
B.
,
Walter
,
A.
,
Horst
,
A.
,
Osiewacz
,
H. D.
and
Kühlbrandt
,
W.
(
2013
).
Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria
.
Proc. Natl. Acad. Sci. USA
110
,
15301
-
15306
.
Davies
,
K. M.
,
Strauss
,
M.
,
Daum
,
B.
,
Kief
,
J. H.
,
Osiewacz
,
H. D.
,
Rycovska
,
A.
,
Zickermann
,
V.
and
Kühlbrandt
,
W.
(
2011
).
Macromolecular organization of ATP synthase and complex I in whole mitochondria
.
Proc. Natl. Acad. Sci. USA
108
,
14121
-
14126
.
Davies
,
K. M.
,
Anselmi
,
C.
,
Wittig
,
I.
,
Faraldo-Gómez
,
J. D.
and
Kühlbrandt
,
W.
(
2012
).
Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae
.
Proc. Natl. Acad. Sci. USA
109
,
13602
-
13607
.
Decker
,
S. T.
and
Funai
,
K.
(
2024
).
Mitochondrial membrane lipids in the regulation of bioenergetic flux
.
Cell Metab.
36
,
1963
-
1978
.
de Duve
,
C.
(
2007
).
The origin of eukaryotes: a reappraisal
.
Nat. Rev. Genet.
8
,
395
-
403
.
Degli Esposti
,
M.
(
2014
).
Bioenergetic evolution in proteobacteria and mitochondria
.
Genome Biol. Evol.
6
,
3238
-
3251
.
Degli Esposti
,
M.
,
Chouaia
,
B.
,
Comandatore
,
F.
,
Crotti
,
E.
,
Sassera
,
D.
,
Lievens
,
P. M.-J.
,
Daffonchio
,
D.
and
Bandi
,
C.
(
2014
).
Evolution of mitochondria reconstructed from the energy metabolism of living bacteria
.
PLoS ONE
9
,
e96566
.
de Rudder
,
K. E.
,
Sohlenkamp
,
C.
and
Geiger
,
O.
(
1999
).
Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase
.
J. Biol. Chem.
274
,
20011
-
20016
.
Donohue
,
T. J.
,
Cain
,
B. D.
and
Kaplan
,
S.
(
1982
).
Alterations in the phospholipid composition of Rhodopseudomonas sphaeroides and other bacteria induced by Tris
.
J. Bacteriol.
152
,
595
-
606
.
Dunfield
,
P. F.
,
Belova
,
S. E.
,
Vorob'ev
,
A. V.
,
Cornish
,
S. L.
and
Dedysh
,
S. N.
(
2010
).
Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa
.
Int. J. Syst. Evol. Microbiol.
60
,
2659
-
2664
.
Dymond
,
M. K.
(
2021
).
Lipid monolayer spontaneous curvatures: A collection of published values
.
Chem. Phys. Lipids
239
,
105117
.
Eme
,
L.
,
Tamarit
,
D.
,
Caceres
,
E. F.
,
Stairs
,
C. W.
,
De Anda
,
V.
,
Schön
,
M. E.
,
Seitz
,
K. W.
,
Dombrowski
,
N.
,
Lewis
,
W. H.
,
Homa
,
F.
et al.
(
2023
).
Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes
.
Nature
618
,
992
-
999
.
Fan
,
L.
,
Wu
,
D.
,
Goremykin
,
V.
,
Xiao
,
J.
,
Xu
,
Y.
,
Garg
,
S.
,
Zhang
,
C.
,
Martin
,
W. F.
and
Zhu
,
R.
(
2020
).
Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat
.
Ecol. Evol.
4
,
1213
-
1219
.
Fitzpatrick
,
D. A.
,
Creevey
,
C. J.
and
McInerney
,
J. O.
(
2006
).
Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales
.
Mol. Biol. Evol.
23
,
74
-
85
.
Frezza
,
C.
,
Cipolat
,
S.
,
de Brito
,
M.
,
Micaroni
,
O.
,
Beznoussenko
,
M.
,
Rudka
,
G. V.
,
Bartoli
,
T.
,
Polishuck
,
D.
,
Danial
,
R. S.
,
De Strooper
,
N. N.
(
2006
).
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
.
Cell
126
,
177
-
189
.
Friedman
,
J. R.
,
Mourier
,
A.
,
Yamada
,
J.
,
McCaffery
,
J. M.
and
Nunnari
,
J.
(
2015
).
MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture
.
Elife
4
,
e07739
.
Fuhrmann
,
D. C.
and
Brüne
,
B.
(
2017
).
Mitochondrial composition and function under the control of hypoxia
.
Redox Biol.
12
,
208
-
215
.
Gabaldón
,
T.
and
Huynen
,
M. A.
(
2004
).
Shaping the mitochondrial proteome
.
Biochim. Biophys. Acta
1659
,
212
-
220
.
Garcia
,
G. C.
,
Bartol
,
T. M.
,
Phan
,
S.
,
Bushong
,
E. A.
,
Perkins
,
G.
,
Sejnowski
,
T. J.
,
Ellisman
,
M. H.
and
Skupin
,
A.
(
2019
).
Mitochondrial morphology provides a mechanism for energy buffering at synapses
.
Sci. Rep.
9
,
18306
.
Garcia
,
G. C.
,
Gupta
,
K.
,
Bartol
,
T. M.
,
Sejnowski
,
T. J.
and
Rangamani
,
P.
(
2023
).
Mitochondrial morphology governs ATP production rate
.
J. Gen. Physiol.
155
,
e202213263
.
Geiger
,
O.
,
López-Lara
,
I. M.
and
Sohlenkamp
,
C.
(
2013
).
Phosphatidylcholine biosynthesis and function in bacteria
.
Biochim. Biophys. Acta
1831
,
503
-
513
.
Geiger
,
O.
,
Sanchez-Flores
,
A.
,
Padilla-Gomez
,
J.
and
Degli Esposti
,
M.
(
2023
).
Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria
.
Sci. Adv.
9
,
eadh0066
.
Glytsou
,
C.
,
Calvo
,
E.
,
Cogliati
,
S.
,
Mehrotra
,
A.
,
Anastasia
,
I.
,
Rigoni
,
G.
,
Raimondi
,
A.
,
Shintani
,
N.
,
Loureiro
,
M.
,
Vazquez
,
J.
et al.
(
2016
).
Optic atrophy 1 is epistatic to the core MICOS component MIC60 in mitochondrial cristae shape control
.
Cell Rep.
17
,
3024
-
3034
.
Golla
,
V. K.
,
Boyd
,
K. J.
and
May
,
E. R.
(
2024
).
Curvature sensing lipid dynamics in a mitochondrial inner membrane model
.
Commun. Biol.
7
,
29
.
Gopalakrishnan
,
A. S.
,
Chen
,
Y. C.
,
Temkin
,
M.
and
Dowhan
,
W.
(
1986
).
Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli
.
J. Biol. Chem.
261
,
1329
-
1338
.
Gray
,
M. W.
(
1983
).
The bacterial ancestry of plastids and mitochondria
.
Bioscience
33
,
693
-
699
.
Gray
,
M. W.
(
2012
).
Mitochondrial evolution
.
Cold Spring Harb. Perspect. Biol.
4
,
a011403
.
Gray
,
M. W.
(
2015
).
Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria
.
Proc. Natl. Acad. Sci. USA
112
,
10133
-
10138
.
Gray
,
M. W.
,
Lang
,
B. F.
,
Cedergren
,
R.
,
Golding
,
G. B.
,
Lemieux
,
C.
,
Sankoff
,
D.
,
Turmel
,
M.
,
Brossard
,
N.
,
Delage
,
E.
,
Littlejohn
,
T. G.
et al.
(
1998
).
Genome structure and gene content in protist mitochondrial DNAs
.
Nucleic Acids Res.
26
,
865
-
878
.
Gray
,
M. W.
,
Burger
,
G.
and
Lang
,
B. F.
(
1999
).
Mitochondrial evolution
.
Science
283
,
1476
-
1481
.
Gray
,
M. W.
,
Burger
,
G.
and
Lang
,
B. F.
(
2001
).
The origin and early evolution of mitochondria
.
Genome Biol.
2
,
REVIEWS1018
.
Hall
,
J. B.
(
1973
).
The nature of the host in the origin of the eukaryote cell
.
J. Theor. Biol.
38
,
413
-
418
.
Harner
,
M.
,
Körner
,
C.
,
Walther
,
D.
,
Mokranjac
,
D.
,
Kaesmacher
,
J.
,
Welsch
,
U.
,
Griffith
,
J.
,
Mann
,
M.
,
Reggiori
,
F.
and
Neupert
,
W.
(
2011
).
The mitochondrial contact site complex, a determinant of mitochondrial architecture
.
EMBO J.
30
,
4356
-
4370
.
Harner
,
M. E.
,
Unger
,
A.-K.
,
Geerts
,
W. J.
,
Mari
,
M.
,
Izawa
,
T.
,
Stenger
,
M.
,
Geimer
,
S.
,
Reggiori
,
F.
,
Westermann
,
B.
and
Neupert
,
W.
(
2016
).
An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation
.
Elife
5
,
e18853
.
Hashimi
,
H.
,
Gahura
,
O.
and
Pánek
,
T.
(
2024
).
Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion
.
Biol. Rev. Camb. Philos. Soc.
100
,
920
-
935
.
Heikinheimo
,
L.
and
Somerharju
,
P.
(
1998
).
Preferential decarboxylation of hydrophilic phosphatidylserine species in cultured cells. Implications on the mechanism of transport to mitochondria and cellular aminophospholipid species compositions
.
J. Biol. Chem.
273
,
3327
-
3335
.
Heikinheimo
,
L.
and
Somerharju
,
P.
(
2002
).
Translocation of phosphatidylthreonine and -serine to mitochondria diminishes exponentially with increasing molecular hydrophobicity
.
Traffic
3
,
367
-
377
.
Helle
,
S. C. J.
,
Kanfer
,
G.
,
Kolar
,
K.
,
Lang
,
A.
,
Michel
,
A. H.
and
Kornmann
,
B.
(
2013
).
Organization and function of membrane contact sites
.
Biochim. Biophys. Acta
1833
,
2526
-
2541
.
Hirschberg
,
C. B.
and
Kennedy
,
E. P.
(
1972
).
Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli
.
Proc. Natl. Acad. Sci. USA
69
,
648
-
651
.
Hoppins
,
S.
,
Collins
,
S. R.
,
Cassidy-Stone
,
A.
,
Hummel
,
E.
,
Devay
,
R. M.
,
Lackner
,
L. L.
,
Westermann
,
B.
,
Schuldiner
,
M.
,
Weissman
,
J. S.
and
Nunnari
,
J.
(
2011
).
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria
.
J. Cell Biol.
195
,
323
-
340
.
Horvath
,
S. E.
and
Daum
,
G.
(
2013
).
Lipids of mitochondria
.
Prog. Lipid Res.
52
,
590
-
614
.
Horvath
,
S. E.
,
Böttinger
,
L.
,
Vögtle
,
F.-N.
,
Wiedemann
,
N.
,
Meisinger
,
C.
,
Becker
,
T.
and
Daum
,
G.
(
2012
).
Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1
.
J. Biol. Chem.
287
,
36744
-
36755
.
Hostetler
,
K. Y.
,
Van den Bosch
,
H.
and
Van Deenen
,
L. L.
(
1971
).
Biosynthesis of cardiolipin in liver mitochondria
.
Biochim. Biophys. Acta
239
,
113
-
119
.
Hostetler
,
K. Y.
,
van den Bosch
,
H.
and
van Deenen
,
L. L.
(
1972
).
The mechanism of cardiolipin biosynthesis in liver mitochondria
.
Biochim. Biophys. Acta
260
,
507
-
513
.
Hovius
,
R.
,
Lambrechts
,
H.
,
Nicolay
,
K.
and
de Kruijff
,
B.
(
1990
).
Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane
.
Biochim. Biophys. Acta Biomembr.
1021
,
217
-
226
.
Hu
,
C.
,
Shu
,
L.
,
Huang
,
X.
,
Yu
,
J.
,
Li
,
L.
,
Gong
,
L.
,
Yang
,
M.
,
Wu
,
Z.
,
Gao
,
Z.
,
Zhao
,
Y.
et al.
(
2020
).
OPA1 and MICOS Regulate mitochondrial crista dynamics and formation
.
Cell Death Dis.
11
,
940
.
Huynen
,
M. A.
,
Mühlmeister
,
M.
,
Gotthardt
,
K.
,
Guerrero-Castillo
,
S.
and
Brandt
,
U.
(
2016
).
Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex
.
Biochim. Biophys. Acta
1863
,
91
-
101
.
Iba
,
K.
,
Takamiya
,
K.
,
Toh
,
Y.
and
Nishimura
,
M.
(
1988
).
Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114
.
J. Bacteriol.
170
,
1843
-
1847
.
Ikon
,
N.
and
Ryan
,
R. O.
(
2017
).
Cardiolipin and mitochondrial cristae organization
.
Biochim. Biophys. Acta Biomembr.
1859
,
1156
-
1163
.
Imachi
,
H.
,
Nobu
,
M. K.
,
Nakahara
,
N.
,
Morono
,
Y.
,
Ogawara
,
M.
,
Takaki
,
Y.
,
Takano
,
Y.
,
Uematsu
,
K.
,
Ikuta
,
T.
,
Ito
,
M.
et al.
(
2020
).
Isolation of an archaeon at the prokaryote-eukaryote interface
.
Nature
577
,
519
-
525
.
Jiang
,
F.
,
Ryan
,
M. T.
,
Schlame
,
M.
,
Zhao
,
M.
,
Gu
,
Z.
,
Klingenberg
,
M.
,
Pfanner
,
N.
and
Greenberg
,
M. L.
(
2000
).
Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function
.
J. Biol. Chem.
275
,
22387
-
22394
.
Joshi
,
A.
,
Richard
,
T. H.
and
Gohil
,
V. M.
(
2023
).
Mitochondrial phospholipid metabolism in health and disease
.
J. Cell Sci.
136
,
jcs260857
.
Kamphorst
,
J. J.
,
Cross
,
J. R.
,
Fan
,
J.
,
de Stanchina
,
E.
,
Mathew
,
R.
,
White
,
E. P.
,
Thompson
,
C. B.
and
Rabinowitz
,
J. D.
(
2013
).
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
.
Proc. Natl. Acad. Sci. USA
110
,
8882
-
8887
.
Kannan
,
S.
,
Rogozin
,
I. B.
and
Koonin
,
E. V.
(
2014
).
MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes
.
BMC Evol. Biol.
14
,
237
.
Kaufmann
,
N.
,
Reidl
,
H.-H.
,
Golecki
,
J. R.
,
Garcia
,
A. F.
and
Drews
,
G.
(
1982
).
Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from chemotrophic to phototrophic growth conditions
.
Arch. Microbiol.
131
,
313
-
322
.
Kaurov
,
I.
,
Vancová
,
M.
,
Schimanski
,
B.
,
Cadena
,
L. R.
,
Heller
,
J.
,
Bílý
,
T.
,
Potěšil
,
D.
,
Eichenberger
,
C.
,
Bruce
,
H.
,
Oeljeklaus
,
S.
et al.
(
2018
).
The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import
.
Curr. Biol.
28
,
3393
-
3407.e5
.
Kawai
,
F.
,
Shoda
,
M.
,
Harashima
,
R.
,
Sadaie
,
Y.
,
Hara
,
H.
and
Matsumoto
,
K.
(
2004
).
Cardiolipin domains in Bacillus subtilis marburg membranes
.
J. Bacteriol.
186
,
1475
-
1483
.
Kennedy
,
E. P.
and
Weiss
,
S. B.
(
1956
).
The function of cytidine coenzymes in the biosynthesis of phospholipides
.
J. Biol. Chem.
222
,
193
-
214
.
Khalifat
,
N.
,
Puff
,
N.
,
Bonneau
,
S.
,
Fournier
,
J.-B.
and
Angelova
,
M. I.
(
2008
).
Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics
.
Biophys. J.
95
,
4924
-
4933
.
Khalifat
,
N.
,
Fournier
,
J.-B.
,
Angelova
,
M. I.
and
Puff
,
N.
(
2011
).
Lipid packing variations induced by pH in cardiolipin-containing bilayers: The driving force for the cristae-like shape instability
.
Biochim. Biophys. Acta Biomembr.
1808
,
2724
-
2733
.
Kip
,
N.
,
Ouyang
,
W.
,
van Winden
,
J.
,
Raghoebarsing
,
A.
,
van Niftrik
,
L.
,
Pol
,
A.
,
Pan
,
Y.
,
Bodrossy
,
L.
,
van Donselaar
,
E. G.
,
Reichart
,
G.-J.
et al.
(
2011
).
Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses
.
Appl. Environ. Microbiol
77
,
5643
-
5654
.
Klecker
,
T.
and
Westermann
,
B.
(
2021
).
Pathways shaping the mitochondrial inner membrane
.
Open Biol.
11
,
210238
.
Kühlbrandt
,
W.
(
2015
).
Structure and function of mitochondrial membrane protein complexes
.
BMC Biol.
13
,
89
.
Kühlbrandt
,
W.
(
2019
).
Structure and mechanisms of F-type ATP synthases
.
Annu. Rev. Biochem.
88
,
515
-
549
.
Kulichevskaya
,
I. S.
,
Guzev
,
V. S.
,
Gorlenko
,
V. M.
,
Liesack
,
W.
and
Dedysh
,
S. N.
(
2006
).
Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog
.
Int. J. Syst. Evol. Microbiol.
56
,
1397
-
1402
.
Kurland
,
C. G.
and
Andersson
,
S. G.
(
2000
).
Origin and evolution of the mitochondrial proteome
.
Microbiol. Mol. Biol. Rev.
64
,
786
-
820
.
Kwast
,
K. E.
,
Burke
,
P. V.
,
Staahl
,
B. T.
and
Poyton
,
R. O.
(
1999
).
Oxygen sensing in yeast: Evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes
.
Proc. Natl Acad. Sci. USA
96
,
5446
-
5451
.
Lang
,
B. F.
,
Burger
,
G.
,
O'Kelly
,
C. J.
,
Cedergren
,
R.
,
Golding
,
G. B.
,
Lemieux
,
C.
,
Sankoff
,
D.
,
Turmel
,
M.
and
Gray
,
M. W.
(
1997
).
An ancestral mitochondrial DNA resembling a eubacterial genome in miniature
.
Nature
387
,
493
-
497
.
LeCocq
,
J.
and
Ballou
,
C. E.
(
1964
).
On the Structure of Cardiolipin*
.
Biochemistry
3
,
976
-
980
.
Lee
,
C. T.
,
Laughlin
,
J. G.
,
Angliviel de La Beaumelle
,
N.
,
Amaro
,
R. E.
,
McCammon
,
J. A.
,
Ramamoorthi
,
R.
,
Holst
,
M.
and
and Rangamani
,
P.
(
2020
).
3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries
.
PLoS Comput. Biol.
16
,
e1007756
.
Lin
,
T.-Y.
,
Santos
,
T. M. A.
,
Kontur
,
W. S.
,
Donohue
,
T. J.
and
Weibel
,
D. B.
(
2015
).
A cardiolipin-deficient mutant of Rhodobacter sphaeroides has an altered cell shape and is impaired in biofilm formation
.
J. Bacteriol.
197
,
3446
-
3455
.
Liu
,
R.
and
Chan
,
D. C.
(
2017
).
OPA1 and cardiolipin team up for mitochondrial fusion
.
Nat. Cell Biol.
19
,
760
-
762
.
Lu
,
Y.-H.
,
Guan
,
Z.
,
Zhao
,
J.
and
Raetz
,
C. R. H.
(
2011
).
Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli
.
J. Biol. Chem.
286
,
5506
-
5518
.
Luévano-Martínez
,
L. A.
and
Duncan
,
A. L.
(
2020
).
Origin and diversification of the cardiolipin biosynthetic pathway in the Eukarya domain
.
Biochem. Soc. Trans.
48
,
1035
-
1046
.
Mannella
,
C. A.
,
Pfeiffer
,
D. R.
,
Bradshaw
,
P. C.
,
Moraru
,
I. I.
,
Slepchenko
,
B.
,
Loew
,
L. M.
,
Hsieh
,
C. E.
,
Buttle
,
K.
and
Marko
,
M.
(
2001
).
Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications
.
IUBMB Life
52
,
93
-
100
.
Mannella
,
C. A.
,
Lederer
,
W. J.
and
Jafri
,
M. S.
(
2013
).
The connection between inner membrane topology and mitochondrial function
.
J. Mol. Cell. Cardiol.
62
,
51
-
57
.
Mårtensson
,
C. U.
,
Doan
,
K. N.
and
Becker
,
T.
(
2017
).
Effects of lipids on mitochondrial functions
.
Biochim. Biophys. Acta
1862
,
102
-
113
.
Martijn
,
J.
,
Vosseberg
,
J.
,
Guy
,
L.
,
Offre
,
P.
and
Ettema
,
T. J. G.
(
2018
).
Deep mitochondrial origin outside the sampled alphaproteobacteria
.
Nature
557
,
101
-
105
.
Martijn
,
J.
,
Vosseberg
,
J.
,
Guy
,
L.
,
Offre
,
P.
and
Ettema
,
T. J. G.
(
2022
).
Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat
.
Ecol. Evol.
6
,
1829
-
1831
.
Martin
,
W.
and
Kowallik
,
K.
(
1999
).
Annotated English translation of Mereschkowsky's 1905 paper “Über Natur und Ursprung der Chromatophoren imPflanzenreiche”
.
Eur. J. Phycol.
34
,
287
-
295
.
Martin
,
W. F.
,
Garg
,
S.
and
Zimorski
,
V.
(
2015
).
Endosymbiotic theories for eukaryote origin
.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
370
,
20140330
.
Martínez-Morales
,
F.
,
Schobert
,
M.
,
López-Lara
,
I. M.
and
Geiger
,
O.
(
2003
).
Pathways for phosphatidylcholine biosynthesis in bacteria
.
Microbiology
149
,
3461
-
3471
.
McGlynn
,
S. E.
,
Perkins
,
G.
,
Sim
,
M. S.
,
Mackey
,
M.
,
Deerinck
,
T. J.
,
Thor
,
A.
,
Phan
,
S.
,
Ballard
,
D.
,
Ellisman
,
M. H.
and
Orphan
,
V. J.
(
2022
).
A cristae-like microcompartment in Desulfobacterota
.
MBio
13
,
e0161322
.
Mehdipour
,
A. R.
and
Hummer
,
G.
(
2016
).
Cardiolipin puts the seal on ATP synthase
.
Proc. Natl. Acad. Sci. USA
113
,
8568
-
8570
.
Mendelsohn
,
R.
,
Garcia
,
G. C.
,
Bartol
,
T. M.
,
Lee
,
C. T.
,
Khandelwal
,
P.
,
Liu
,
E.
,
Spencer
,
D. J.
,
Husar
,
A.
,
Bushong
,
E. A.
,
Phan
,
S.
et al.
(
2022
).
Morphological principles of neuronal mitochondria
.
J. Comp. Neurol
530
,
886
-
902
.
Mileykovskaya
,
E.
and
Dowhan
,
W.
(
2000
).
Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange
.
J. Bacteriol.
182
,
1172
-
1175
.
Mills
,
D. B.
,
Boyle
,
R. A.
,
Daines
,
S. J.
,
Sperling
,
E. A.
,
Pisani
,
D.
,
Donoghue
,
P. C. J.
and
Lenton
,
T. M.
(
2022
).
Eukaryogenesis and oxygen in Earth history
.
Nat. Ecol. Evol.
6
,
520
-
532
.
Moser
,
R.
,
Aktas
,
M.
,
Fritz
,
C.
and
Narberhaus
,
F.
(
2014
).
Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria: Phospholipid biosynthesis inXanthomonas
.
Mol. Microbiol.
92
,
959
-
972
.
Mühleip
,
A.
,
McComas
,
S. E.
and
Amunts
,
A.
(
2019
).
Structure of a mitochondrial ATP synthase with bound native cardiolipin
.
Elife
8
,
e51179
.
Mühleip
,
A.
,
Flygaard
,
R. K.
,
Baradaran
,
R.
,
Haapanen
,
O.
,
Gruhl
,
T.
,
Tobiasson
,
V.
,
Maréchal
,
A.
,
Sharma
,
V.
and
Amunts
,
A.
(
2023
).
Structural basis of mitochondrial membrane bending by the I–II–III2–IV2 supercomplex
.
Nature
615
,
934
-
938
.
Muñoz-Gómez
,
S. A.
,
Slamovits
,
C. H.
,
Dacks
,
J. B.
,
Baier
,
K. A.
,
Spencer
,
K. D.
and
Wideman
,
J. G.
(
2015a
).
Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae
.
Curr. Biol.
25
,
1489
-
1495
.
Muñoz-Gómez
,
S. A.
,
Slamovits
,
C. H.
,
Dacks
,
J. B.
and
Wideman
,
J. G.
(
2015b
).
The evolution of MICOS: Ancestral and derived functions and interactions
.
Commun. Integr. Biol.
8
,
e1094593
.
Muñoz-Gómez
,
S. A.
,
Wideman
,
J. G.
,
Roger
,
A. J.
and
Slamovits
,
C. H.
(
2017
).
The origin of mitochondrial cristae from Alphaproteobacteria
.
Mol. Biol. Evol.
34
,
943
-
956
.
Muñoz-Gómez
,
S. A.
,
Susko
,
E.
,
Williamson
,
K.
,
Eme
,
L.
,
Slamovits
,
C. H.
,
Moreira
,
D.
,
López-García
,
P.
and
Roger
,
A. J.
(
2022
).
Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria
.
Nat. Ecol. Evol.
6
,
253
-
262
.
Muñoz-Gómez
,
S. A.
,
Cadena
,
L. R.
,
Gardiner
,
A. T.
,
Leger
,
M. M.
,
Sheikh
,
S.
,
Connell
,
L. B.
,
Bilý
,
T.
,
Kopejtka
,
K.
,
Beatty
,
J. T.
,
Koblížek
,
M.
et al.
(
2023
).
Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60
.
Curr. Biol
33
,
1099
-
1111.e6
.
Nagies
,
F. S. P.
,
Brueckner
,
J.
,
Tria
,
F. D. K.
and
Martin
,
W. F.
(
2020
).
A spectrum of verticality across genes
.
PLoS Genet.
16
,
e1009200
.
Niederman
,
R. A
. (
2006
).
Structure, function and formation of bacterial intracytoplasmic membranes
. In
Complex Intracellular Structures in Prokaryotes
(ed.
J. M.
Shively
), pp.
193
-
227
.
Microbiology Monographs
,
Berlin, Heidelberg
:
Springer Berlin Heidelberg
.
Oemer
,
G.
,
Lackner
,
K.
,
Muigg
,
K.
,
Krumschnabel
,
G.
,
Watschinger
,
K.
,
Sailer
,
S.
,
Lindner
,
H.
,
Gnaiger
,
E.
,
Wortmann
,
S. B.
,
Werner
,
E. R.
et al.
(
2018
).
Molecular structural diversity of mitochondrial cardiolipins
.
Proc. Natl. Acad. Sci. USA
115
,
4158
-
4163
.
Oemer
,
G.
,
Koch
,
J.
,
Wohlfarter
,
Y.
,
Alam
,
M. T.
,
Lackner
,
K.
,
Sailer
,
S.
,
Neumann
,
L.
,
Lindner
,
H. H.
,
Watschinger
,
K.
,
Haltmeier
,
M.
et al.
(
2020
).
Phospholipid Acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins
.
Cell Rep.
30
,
4281
-
4291.e4
.
Osman
,
C.
,
Haag
,
M.
,
Wieland
,
F. T.
,
Brügger
,
B.
and
Langer
,
T.
(
2010
).
A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4
.
EMBO J.
29
,
1976
-
1987
.
Osman
,
C.
,
Voelker
,
D. R.
and
Langer
,
T.
(
2011
).
Making heads or tails of phospholipids in mitochondria
.
J. Cell Biol.
192
,
7
-
16
.
Pánek
,
T.
,
Eliáš
,
M.
,
Vancová
,
M.
,
Lukeš
,
J.
and
Hashimi
,
H.
(
2020
).
Returning to the fold for lessons in mitochondrial Crista diversity and evolution
.
Curr. Biol.
30
,
R575
-
R588
.
Patt
,
T. E.
and
Hanson
,
R. S.
(
1978
).
Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions
.
J. Bacteriol.
134
,
636
-
644
.
Patten
,
D. A.
,
Wong
,
J.
,
Khacho
,
M.
,
Soubannier
,
V.
,
Mailloux
,
R. J.
,
Pilon-Larose
,
K.
,
MacLaurin
,
J. G.
,
Park
,
D. S.
,
McBride
,
H. M.
,
Trinkle-Mulcahy
,
L.
et al.
(
2014
).
OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand
.
EMBO J.
33
,
2676
-
2691
.
Paumard
,
P.
,
Vaillier
,
J.
,
Coulary
,
B.
,
Schaeffer
,
J.
,
Soubannier
,
V.
,
Mueller
,
D. M.
,
Brèthes
,
D.
,
di Rago
,
J.-P.
and
Velours
,
J.
(
2002
).
The ATP synthase is involved in generating mitochondrial cristae morphology
.
EMBO J.
21
,
221
-
230
.
Pérez-Cobas
,
A. E.
,
Gomez-Valero
,
L.
and
Buchrieser
,
C.
(
2020
).
Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses
.
Microb. Genom.
6
,
jcs260857
.
Pfanner
,
N.
,
Warscheid
,
B.
and
Wiedemann
,
N.
(
2019
).
Mitochondrial proteins: from biogenesis to functional networks
.
Nat. Rev. Mol. Cell Biol.
20
,
267
-
284
.
Pfeiffer
,
K.
,
Gohil
,
V.
,
Stuart
,
R. A.
,
Hunte
,
C.
,
Brandt
,
U.
,
Greenberg
,
M. L.
and
Schägger
,
H.
(
2003
).
Cardiolipin stabilizes respiratory chain supercomplexes
.
J. Biol. Chem.
278
,
52873
-
52880
.
Quintana-Cabrera
,
R.
,
Quirin
,
C.
,
Glytsou
,
C.
,
Corrado
,
M.
,
Urbani
,
A.
,
Pellattiero
,
A.
,
Calvo
,
E.
,
Vázquez
,
J.
,
Enríquez
,
J. A.
,
Gerle
,
C.
et al.
(
2018
).
The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
.
Nat. Commun.
9
,
3399
.
Rabl
,
R.
,
Soubannier
,
V.
,
Scholz
,
R.
,
Vogel
,
F.
,
Mendl
,
N.
,
Vasiljev-Neumeyer
,
A.
,
Körner
,
C.
,
Jagasia
,
R.
,
Keil
,
T.
,
Baumeister
,
W.
et al.
(
2009
).
Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g
.
J. Cell Biol.
185
,
1047
-
1063
.
Rappocciolo
,
E.
and
Stiban
,
J.
(
2019
).
Prokaryotic and mitochondrial lipids: A survey of evolutionary origins
.
Adv. Exp. Med. Biol.
1159
,
5
-
31
.
Rath
,
S.
,
Sharma
,
R.
,
Gupta
,
R.
,
Ast
,
T.
,
Chan
,
C.
,
Durham
,
T. J.
,
Goodman
,
R. P.
,
Grabarek
,
Z.
,
Haas
,
M. E.
,
Hung
,
W. H. W.
et al.
(
2021
).
MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations
.
Nucleic Acids Res.
49
,
D1541
-
D1547
.
Raval
,
P. K.
,
Martin
,
W. F.
and
Gould
,
S. B.
(
2023
).
Mitochondrial evolution: Gene shuffling, endosymbiosis, and signaling
.
Sci. Adv.
9
,
eadj4493
.
Reed
,
W. M.
,
Titus
,
J. A.
,
Dugan
,
P. R.
and
Pfister
,
R. M.
(
1980
).
Structure of Methylosinus trichosporium exospores
.
J. Bacteriol.
141
,
908
-
913
.
Renne
,
M. F.
,
Bao
,
X.
,
Hokken
,
M. W. J.
,
Bierhuizen
,
A. S.
,
Hermansson
,
M.
,
Sprenger
,
R. R.
,
Ewing
,
T. A.
,
Ma
,
X.
,
Cox
,
R. C.
,
Brouwers
,
J. F.
et al.
(
2022
).
Molecular species selectivity of lipid transport creates a mitochondrial sink for di–unsaturated phospholipids
.
EMBO J.
41
,
e106837
.
Renner
,
L. D.
and
Weibel
,
D. B.
(
2011
).
Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes
.
Proc. Natl Acad. Sci. USA
108
,
6264
-
6269
.
Rodrigues-Oliveira
,
T.
,
Wollweber
,
F.
,
Ponce-Toledo
,
R. I.
,
Xu
,
J.
,
Rittmann
,
S. K.-M. R.
,
Klingl
,
A.
,
Pilhofer
,
M.
and
Schleper
,
C.
(
2023
).
Actin cytoskeleton and complex cell architecture in an Asgard archaeon
.
Nature
613
,
332
-
339
.
Rodríguez-Ezpeleta
,
N.
and
Embley
,
T. M.
(
2012
).
The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria
.
PLoS ONE
7
,
e30520
.
Roger
,
A. J.
,
Muñoz-Gómez
,
S. A.
and
Kamikawa
,
R.
(
2017
).
The origin and diversification of mitochondria
.
Curr. Biol.
27
,
R1177
-
R1192
.
Rowlett
,
V. W.
,
Mallampalli
,
V. K. P. S.
,
Karlstaedt
,
A.
,
Dowhan
,
W.
,
Taegtmeyer
,
H.
,
Margolin
,
W.
and
Vitrac
,
H.
(
2017
).
Impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation
.
J. Bacteriol.
199
,
e00849-16
.
Sagan
,
L.
(
1967
).
On the origin of mitosing cells
.
J. Theor. Biol.
14
,
255
-
274
.
Schlame
,
M.
(
2008
).
Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes
.
J. Lipid Res.
49
,
1607
-
1620
.
Schlame
,
M.
and
Haldar
,
D.
(
1993
).
Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria
.
J. Biol. Chem.
268
,
74
-
79
.
Schlame
,
M.
,
Ren
,
M.
,
Xu
,
Y.
,
Greenberg
,
M. L.
and
Haller
,
I.
(
2005
).
Molecular symmetry in mitochondrial cardiolipins
.
Chem. Phys. Lipids
138
,
38
-
49
.
Schlame
,
M.
,
Acehan
,
D.
,
Berno
,
B.
,
Xu
,
Y.
,
Valvo
,
S.
,
Ren
,
M.
,
Stokes
,
D. L.
and
Epand
,
R. M.
(
2012
).
The physical state of lipid substrates provides transacylation specificity for tafazzin
.
Nat. Chem. Biol.
8
,
862
-
869
.
Schlame
,
M.
,
Xu
,
Y.
and
Ren
,
M.
(
2017
).
The Basis for Acyl specificity in the tafazzin reaction
.
J. Biol. Chem.
292
,
5499
-
5506
.
Schnare
,
M. N.
and
Gray
,
M. W.
(
1982
).
3’-Terminal sequence of wheat mitochondrial 18S ribosomal RNA: further evidence of a eubacterial evolutionary origin
.
Nucleic Acids Res.
10
,
3921
-
3932
.
Schuiki
,
I.
and
Daum
,
G.
(
2009
).
Phosphatidylserine decarboxylases, key enzymes of lipid metabolism
.
IUBMB Life
61
,
151
-
162
.
Schüler
,
D.
(
2008
).
Genetics and cell biology of magnetosome formation in magnetotactic bacteria
.
FEMS Microbiol. Rev.
32
,
654
-
672
.
Schweppe
,
D. K.
,
Chavez
,
J. D.
,
Lee
,
C. F.
,
Caudal
,
A.
,
Kruse
,
S. E.
,
Stuppard
,
R.
,
Marcinek
,
D. J.
,
Shadel
,
G. S.
,
Tian
,
R.
and
Bruce
,
J. E.
(
2017
).
Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry
.
Proc. Natl. Acad. Sci. USA
114
,
1732
-
1737
.
Scott
,
D.
,
Brannan
,
J.
and
Higgins
,
I. J.
(
1981
).
The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b
.
Microbiology
125
,
63
-
72
.
Serricchio
,
M.
and
Bütikofer
,
P.
(
2012
).
An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote
.
Proc. Natl. Acad. Sci. USA
109
,
E954
-
E961
.
Shih
,
P. M.
and
Matzke
,
N. J.
(
2013
).
Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins
.
Proc. Natl. Acad. Sci. USA
110
,
12355
-
12360
.
Sohlenkamp
,
C.
and
Geiger
,
O.
(
2016
).
Bacterial membrane lipids: diversity in structures and pathways
.
FEMS Microbiol. Rev.
40
,
133
-
159
.
Spang
,
A.
,
Saw
,
J. H.
,
Jørgensen
,
S. L.
,
Zaremba-Niedzwiedzka
,
K.
,
Martijn
,
J.
,
Lind
,
A. E.
,
van Eijk
,
R.
,
Schleper
,
C.
,
Guy
,
L.
and
Ettema
,
T. J. G.
(
2015
).
Complex archaea that bridge the gap between prokaryotes and eukaryotes
.
Nature
521
,
173
-
179
.
Spencer
,
D. F.
,
Schnare
,
M. N.
and
Gray
,
M. W.
(
1984
).
Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli
.
Proc. Natl. Acad. Sci. USA
81
,
493
-
497
.
Stephan
,
T.
,
Brüser
,
C.
,
Deckers
,
M.
,
Steyer
,
A. M.
,
Balzarotti
,
F.
,
Barbot
,
M.
,
Behr
,
T. S.
,
Heim
,
G.
,
Hübner
,
W.
,
Ilgen
,
P.
et al.
(
2020
).
MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation
.
EMBO J.
39
,
e104105
.
Strauss
,
M.
,
Hofhaus
,
G.
,
Schröder
,
R. R.
and
Kühlbrandt
,
W.
(
2008
).
Dimer ribbons of ATP synthase shape the inner mitochondrial membrane
.
EMBO J.
27
,
1154
-
1160
.
Suga
,
S.
,
Nakamura
,
K.
,
Nakanishi
,
Y.
,
Humbel
,
B. M.
,
Kawai
,
H.
and
Hirabayashi
,
Y.
(
2023
).
An interactive deep learning-based approach reveals mitochondrial cristae topologies
.
PLoS Biol.
21
,
e3002246
.
Tan
,
B. K.
,
Bogdanov
,
M.
,
Zhao
,
J.
,
Dowhan
,
W.
,
Raetz
,
C. R. H.
and
Guan
,
Z.
(
2012
).
Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates
.
Proc. Natl. Acad. Sci. USA
109
,
16504
-
16509
.
Tarasenko
,
D.
,
Barbot
,
M.
,
Jans
,
D. C.
,
Kroppen
,
B.
,
Sadowski
,
B.
,
Heim
,
G.
,
Möbius
,
W.
,
Jakobs
,
S.
and
Meinecke
,
M.
(
2017
).
The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology
.
J. Cell Biol.
216
,
889
-
899
.
Thiergart
,
T.
,
Landan
,
G.
,
Schenk
,
M.
,
Dagan
,
T.
and
Martin
,
W. F.
(
2012
).
An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin
.
Genome Biol. Evol.
4
,
466
-
485
.
Thompson
,
E. A.
,
Kaufman
,
A. E.
,
Johnston
,
N. C.
and
Goldfine
,
H.
(
1983
).
Phospholipids ofRhizobium meliloti andAgrobacterium tumefaciens: Lack of effect of Ti plasmid
.
Lipids
18
,
602
-
606
.
Tian
,
H.-F.
,
Feng
,
J.-M.
and
Wen
,
J.-F.
(
2012
).
The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes
.
BMC Evol. Biol.
12
,
32
.
Unger
,
A.-K.
,
Geimer
,
S.
,
Harner
,
M.
,
Neupert
,
W.
and
Westermann
,
B.
(
2017
).
Analysis of yeast mitochondria by electron microscopy
.
Methods Mol. Biol.
1567
,
293
-
314
.
Valdivieso González
,
D.
,
Makowski
,
M.
,
Lillo
,
M. P.
,
Cao-García
,
F. J.
,
Melo
,
M. N.
,
Almendro-Vedia
,
V. G.
and
López-Montero
,
I.
(
2023
).
Rotation of the c-ring promotes the curvature sorting of monomeric ATP synthases
.
Adv. Sci. (Weinh.)
10
,
e2301606
.
van der Veen
,
J. N.
,
Kennelly
,
J. P.
,
Wan
,
S.
,
Vance
,
J. E.
,
Vance
,
D. E.
and
Jacobs
,
R. L.
(
2017
).
The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease
.
Biochim. Biophys. Acta Biomembr.
1859
,
1558
-
1572
.
Vasconcelles
,
M. J.
,
Jiang
,
Y.
,
McDaid
,
K.
,
Gilooly
,
L.
,
Wretzel
,
S.
,
Porter
,
D. L.
,
Martin
,
C. E.
and
Goldberg
,
M. A.
(
2001
).
Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family ofsaccharomyces cerevisiae genes
.
J. Biol. Chem.
276
,
14374
-
14384
.
Vences-Guzmán
,
M. Á.
,
Guan
,
Z.
,
Ormeño-Orrillo
,
E.
,
González-Silva
,
N.
,
López-Lara
,
I. M.
,
Martínez-Romero
,
E.
,
Geiger
,
O.
and
Sohlenkamp
,
C.
(
2011
).
Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899: Hydroxylated ornithine lipids in Rhizobium tropici
.
Mol. Microbiol.
79
,
1496
-
1514
.
Venkatraman
,
K.
and
Budin
,
I.
(
2024
).
Cardiolipin remodeling maintains the inner mitochondrial membrane in cells with saturated lipidomes
.
J. Lipid Res.
65
,
100601
.
Venkatraman
,
K.
,
Lee
,
C. T.
,
Garcia
,
G. C.
,
Mahapatra
,
A.
,
Milshteyn
,
D.
,
Perkins
,
G.
,
Kim
,
K.-Y.
,
Pasolli
,
H. A.
,
Phan
,
S.
,
Lippincott-Schwartz
,
J.
et al.
(
2023
).
Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome
.
EMBO J.
42
,
e114054
.
Venkatraman
,
K.
,
Lee
,
C. T.
and
Budin
,
I.
(
2024
).
Setting the curve: the biophysical properties of lipids in mitochondrial form and function
.
J. Lipid Res.
65
,
100643
.
Vercellino
,
I.
and
Sazanov
,
L. A.
(
2022
).
The assembly, regulation and function of the mitochondrial respiratory chain
.
Nat. Rev. Mol. Cell Biol.
23
,
141
-
161
.
Viale
,
A. M.
and
Arakaki
,
A. K.
(
1994
).
The chaperone connection to the origins of the eukaryotic organelles
.
FEBS Lett.
341
,
146
-
151
.
Voelker
,
D. R.
(
1997
).
Phosphatidylserine decarboxylase
.
Biochim. Biophys. Acta
1348
,
236
-
244
.
Vornanen
,
M.
,
Tiitu
,
V.
,
Käkelä
,
R.
and
Aho
,
E.
(
1999
).
Effects of thermal acclimation on the relaxation system of crucian carp white myotomal muscle
.
J. Exp. Zool.
284
,
241
-
251
.
Wallin
,
I. E.
(
1927
).
Symbionticism and the Origin of Species
.
London
:
Bailliere, Tindall and Cox
.
Wang
,
Z.
and
Wu
,
M.
(
2014
).
Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite
.
PLoS ONE
9
,
e110685
.
Wang
,
Z.
and
Wu
,
M.
(
2015
).
An integrated phylogenomic approach toward pinpointing the origin of mitochondria
.
Sci. Rep.
5
,
7949
.
Watson
,
S. W.
and
Mandel
,
M.
(
1971
).
Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria
.
J. Bacteriol.
107
,
563
-
569
.
Winnikoff
,
J. R.
,
Haddock
,
S. H. D.
and
Budin
,
I.
(
2021
).
Depth- and temperature-specific fatty acid adaptations in ctenophores from extreme habitats
.
J. Exp. Biol.
224
,
jeb242800
.
Yang
,
D.
,
Oyaizu
,
Y.
,
Oyaizu
,
H.
,
Olsen
,
G. J.
and
Woese
,
C. R.
(
1985
).
Mitochondrial origins
.
Proc. Natl. Acad. Sci. USA
82
,
4443
-
4447
.
Zaremba-Niedzwiedzka
,
K.
,
Caceres
,
E. F.
,
Saw
,
J. H.
,
Bäckström
,
D.
,
Juzokaite
,
L.
,
Vancaester
,
E.
,
Seitz
,
K. W.
,
Anantharaman
,
K.
,
Starnawski
,
P.
,
Kjeldsen
,
K. U.
et al.
(
2017
).
Asgard archaea illuminate the origin of eukaryotic cellular complexity
.
Nature
541
,
353
-
358
.
Zhang
,
J.
,
Guan
,
Z.
,
Murphy
,
A. N.
,
Wiley
,
S. E.
,
Perkins
,
G. A.
,
Worby
,
C. A.
,
Engel
,
J. L.
,
Heacock
,
P.
,
Nguyen
,
O. K.
,
Wang
,
J. H.
et al.
(
2011
).
Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis
.
Cell Metab.
13
,
690
-
700
.
Zhu
,
S.
,
Chen
,
Z.
,
Zhu
,
M.
,
Shen
,
Y.
,
Leon
,
L. J.
,
Chi
,
L.
,
Spinozzi
,
S.
,
Tan
,
C.
,
Gu
,
Y.
,
Nguyen
,
A.
et al.
(
2021
).
Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of barth syndrome cardiomyopathy
.
Circ. Heart Fail
14
,
e008289
.
Zuccaro
,
K. E.
,
Abriata
,
L. A.
,
Meireles
,
F. T. P.
,
Moss
,
F. R.
,
Frost
,
A.
,
Peraro
,
M. D.
and
Aydin
,
H.
(
2024
).
Cardiolipin clustering promotes mitochondrial membrane dynamics
.
bioRxiv
,
2024.05.21.595226
.

Competing interests

The authors declare no competing or financial interests.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.