Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus–host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.

Positive-sense (+) single-stranded RNA (+ssRNA) viruses, also known as positive-strand RNA viruses, comprise a diverse group that includes members such as dengue virus (DENV), hepatitis C virus (HCV) and SARS-CoV-2. These viruses share a common replication strategy: the formation of specialised compartments termed replication organelles (ROs) (Belov and van Kuppeveld, 2012; Den Boon and Ahlquist, 2010). ROs are virus-induced structures that serve as factories for viral RNA synthesis, providing a conducive environment for assembly and function of the replication complex. This Cell Science at a Glance article focuses on membrane-derived ROs of +ssRNA viruses, distinct from the membrane-less replication factories formed by negative-strand RNA viruses (Hoenen et al., 2012; Nevers et al., 2020).

See Supplementary information for a high-resolution version of the poster.

See Supplementary information for a high-resolution version of the poster.

ROs of +ssRNA viruses arise from the remarkable ability of viruses to reshape host cell membranes, including the endoplasmic reticulum (ER), Golgi, endosomes, mitochondria and plasma membrane (Nguyen-Dinh and Herker, 2021). Although the specific morphology and biogenesis of ROs varies among virus families (see poster), ROs can be broadly grouped into invagination and protrusion morphotypes, the latter being an intermediate state of double-membrane vesicles (DMVs) (Nguyen-Dinh and Herker, 2021; Wolff et al., 2020b). In general, protrusion-type ROs tend to derive more from the secretory pathway compared to the wider range of organelles generating invagination-type ROs. The source of ROs can vary even within virus families and cell types, as exemplified by the Tombusviridae family (Xu and Nagy, 2014) and coxsackievirus B (CVB) (Melia et al., 2019; Park et al., 2021).

A feature of many ROs is a membrane-spanning pore, recently termed the ‘replicopore’ (Zimmermann et al., 2023), that acts as a controlled gateway between the organelle interior and cytoplasm, regulating the import of essential replication components and the export of newly synthesised viral RNA (Ertel et al., 2017; Wolff et al., 2020a). However, such pores have not been demonstrated for all +ssRNA viruses; for example, picornaviruses use protrusion-like organelles as anchoring sites for replication complexes (Richards and Jackson, 2012). Invagination-type ROs are typically 40–90 nm indentations connected to the cytoplasm via the pore (Kopek et al., 2007), and these ROs can be subdivided based on reliance on polymerase activity. The size of Semliki Forest virus (SFV) ROs correlates with genome length (Kallio et al., 2013), likely following the ‘synthesis model’, where the entire RNA acts as a structural component and its incorporation into the spherule during replication determines the final spherule size. Orthoflaviviruses and brome mosaic virus (BMV) form polymerase-independent invaginations (Schwartz et al., 2004; Welsch et al., 2009). Meanwhile, protrusion-type ROs display more variability, maturing from single- to double- or multi-membrane vesicles or tubules (Knoops et al., 2008; Romero-Brey et al., 2012). This structural diversity can vary throughout infection, as exemplified by coronavirus DMVs, which range from 100 nm to 400 nm in size (Snijder et al., 2020; Wolff et al., 2020a).

The formation and maintenance of ROs requires a delicate interplay between viral and host factors, with non-structural proteins, replicase components, membrane-shaping proteins, lipid enzymes and trafficking components being crucial (Nagy and Pogany, 2012). Viruses actively manipulate host metabolism to supply lipids for membrane proliferation. Fatty acids derived from lipid droplet turnover undergo β-oxidation to support the energy demands of replication (Heaton and Randall, 2011; Zhang et al., 2018). Viruses also recruit host lipid biosynthetic enzymes, exploit transport pathways and establish close contacts between ROs and subcellular organelles (Barajas et al., 2014). RO compartmentalisation also serves to evade host antiviral responses by minimising viral RNA exposure to cytoplasmic sensors and nucleases (Van Hemert et al., 2008a,b). However, host cells have counter-evolved strategies to detect and target ROs, leading to an ongoing evolutionary arms race (Schoggins, 2014). This Cell Science at a Glance article and the accompanying poster provide an overview of the diverse morphologies and origins of ROs across different +ssRNA virus families, highlighting the importance of virus–host interactions that drive RO biogenesis and function, as well as the methods used to study viral ROs (see Box 1).

Box 1. Methods to study +ssRNA virus ROs

The advancement of technical approaches has been instrumental in addressing morphological and functional aspects of ROs. Electron microscopy (EM) and electron tomography (ET) have brought the study of ROs to the forefront (Den Boon et al., 2024), with in situ cryo-EM allowing the analysis of proteins and membranes in a near-native environment (Klein et al., 2020). Although primarily a structural approach, ET has been essential in delineating replication-dependent (Welsch et al., 2009) and replication-independent ROs (Goellner et al., 2020). In situ cryo-ET, combined with subtomogram averaging, can deliver the structure of pore complexes and their minimal components, as well as be used with genetic alterations for correlative studies. Super-resolution fluorescence microscopy has also provided key evidence regarding the composition, structure and assembly of ROs (Andronov et al., 2024), whereas metabolic labelling has indicated the stability of replication complexes in cells (Lan et al., 2023). Several biochemical techniques have been developed to address specific mechanistic details. Lipid contributions to the ROs can be analysed by using lipid probes with microscopy and mass spectrometry (Schultz et al., 2022), whereas contact sites between organelles that support RO formation can be studied using split TurboID (Cho et al., 2020). In vitro reconstitution of RO-like structures on giant unilamellar vesicles can demonstrate the minimal components of these structures (Kovalev et al., 2020). Model viruses with minimalistic genomes, such as Flock House virus (FHV), and replication-independent expression systems (Goellner et al., 2020) can be used to interrogate the contribution of specific components in a simplified setup. Lower eukaryotes such as yeast (as an infection model) have driven the understanding of different aspects of RO formation (Nagy et al., 2014). Importantly, multiple approaches – including metabolic labelling, structural studies and replication-independent systems – can be used in combination to provide mechanistic insights into processes such as the relation of ROs and RNA synthesis. Lastly, mathematical modelling can predict the outcome of events such as drug treatment or mutations (Sunagawa et al., 2023), relying on the similarities between replication kinetics of different viruses and a detailed understanding of all components in the system.

The viral proteins that drive RO biogenesis can be broadly categorised based on their function, with the non-structural proteins being essential (see poster). These are multifunctional proteins that possess various enzymatic activities, such as RNA-dependent RNA polymerase (RdRp), helicase and protease functions, all of which are crucial for viral genome replication (Chen et al., 2020a; Rathnayake et al., 2020; Shiryaev et al., 2023). Others, such as the NS4A, NS4B and NS1 proteins of orthoflaviviruses, interact with host membranes to induce membrane curvature and promote formation of invaginations (Akey et al., 2014; Ci et al., 2020). Similarly, in coronaviruses such as SARS-CoV-1, SARS-CoV-2 and MERS-CoV, Nsp3 and Nsp4 are sufficient to induce formation of DMVs that serve as the primary sites of viral replication, and Nsp6 induces formation of zippered ER membranes connecting DMVs to the ER, facilitating lipid flux (Oudshoorn et al., 2017; Zimmermann et al., 2023).

Studies on the picornaviruses poliovirus, coxsackievirus B3 (CVB3) and encephalomyocarditis virus (EMCV) have provided insights into picornavirus ROs, which are predominantly DMVs. In studies of poliovirus, viral proteins 2BC and 3A have been found to be sufficient to induce DMVs that resemble those formed during infection, likely deriving from the ER but excluding ER-resident proteins (Suhy et al., 2000). For CVB3, the transformation from single-membrane structures to DMVs occurs via membrane pairing and enwrapping, with viral RNA synthesis linked to DMV formation (Limpens et al., 2011). EMCV also forms single-membrane ROs early in infection that transform into DMVs, requiring cellular acidification after a ‘transition point’, separating RNA replication from virion maturation (Galitska et al., 2023; Melia et al., 2018). The specific mechanisms inducing these structures remain to be fully elucidated; however, studies on poliovirus 2C and 3A (Suhy et al., 2000), 2BC-triggered lipidation of LC3 (MAP1LC3) proteins (Dahmane et al., 2022), and EMCV 3A (Galitska et al., 2023), suggest that membrane-associated viral replication proteins play key roles in generating ROs.

Another group of viral proteins essential for RO biogenesis are those that form the pore complex, which typically includes membrane-interacting proteins lining the pore, potential subunits observed as a plug at the opening and the viral polymerase (Ertel et al., 2017; Wolff et al., 2020a). For example, a narrow neck (∼10 nm in diameter) of unknown molecular composition connects DENV ROs with the cytosol (Welsch et al., 2009), whereas in coronaviruses, the Nsp3 protein forms the crown of the pore (Wolff et al., 2020a). Interestingly, pore components are not exclusively non-structural proteins, as the nucleocapsid has been shown to associate with the pore complex in some cases, such as in SARS-CoV-2, binding to Nsp3 at the crown of the pore and likely allowing the delivery of viral RNA from the vesicle interior to an assembling virion (Scherer et al., 2022). However, the precise function of the pore remains an open question that warrants further investigation.

Viral proteins also play an important role in recruiting and manipulating host factors necessary for RO formation by mimicking or hijacking host proteins involved in membrane trafficking, lipid metabolism and organelle dynamics (Nagy and Pogany, 2012). For instance, the poliovirus 3A protein interacts with the host protein GBF1, a guanine-nucleotide-exchange factor involved in membrane trafficking, to facilitate the formation of ROs. Similarly, HCV NS5A interacts with phosphatidylinositol 4-kinase IIIα (PI4KIIIα, encoded by PI4KA), a lipid kinase, to promote synthesis of phosphatidylinositol 4-phosphate (PI4P), which is essential for the formation and maintenance of ROs (Reiss et al., 2011). Another example is the interaction between the West Nile virus (WNV) NS4A protein and reticulon 3.1A (encoded by RTN3), which induces membrane curvature to facilitate RO formation (see section ‘Host proteins involved in RO biogenesis’ below; Aktepe et al., 2017). By interacting with these host factors, viral proteins redirect cellular resources towards the construction of ROs.

The formation and function of ROs heavily depends on the recruitment and manipulation of host factors. These proteins are involved in membrane remodelling, lipid metabolism and the establishment of favourable microenvironments for viral replication (see poster) (Lan et al., 2023; Williams et al., 2023). Viruses often hijack host proteins that naturally participate in inducing membrane curvature, such as reticulons and other ER morphogens including atlastins, receptor expression-enhancing proteins (REEPs) and ARF GTPases (Li et al., 2023b; Neufeldt et al., 2019). For example, enteroviruses subvert reticulons to curve ER membranes into vesicle-connected replication tubules (Melia et al., 2018; Tang et al., 2007), and coronavirus replication has been shown to rely on both reticulons (Williams et al., 2023) and ER sheets (Cortese et al., 2020). Flaviviruses recruit reticulons, atlastins and other GTPases to sites of RO formation, leveraging their membrane-bending properties to create the characteristic RO structures (Aktepe et al., 2017; Neufeldt et al., 2019). Similarly, tombusviruses co-opt ER-localised soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins (Sasvari et al., 2018), which mediate vesicle fusion and are essential for membrane trafficking and remodelling (Jahn et al., 2024).

Many viruses hijack the host secretory pathway (Hsu et al., 2010), so host proteins involved in vesicle trafficking and organelle dynamics also play key roles in RO biogenesis. This includes coat protein complex II (COPII), which facilitates transport of viral and host components to the RO; for example, poliovirus recruits COPII components SEC13 and SEC31 to sites of RO formation (Trahey et al., 2012). Furthermore, viruses induce restructuring of membrane contact sites, allowing non-vesicular transport of metabolites and signalling molecules between subcellular organelles and ROs (Strating and Van Kuppeveld, 2017). Tombusviruses co-opt ER–chloroplast and ER–peroxisome tethering complexes to supply lipids and energy (Barajas et al., 2014; Sasvari et al., 2018), whereas enteroviruses manipulate ER–Golgi membrane contact sites [via oxysterol-binding protein (OSBP) and PI4KB] to direct membrane flow (McPhail et al., 2020; Melia et al., 2019). In HCV, the NS3/4A protease complex cleaves mitochondrial antiviral signalling protein (MAVS) from ER–mitochondria contacts, but not from mitochondria, to disrupt retinoic acid-inducible gene I (RIG-I) signalling, which forms part of the innate immune response (Horner et al., 2011; Piccoli et al., 2009).

In addition, viruses often manipulate cellular processes to their advantage, such as autophagy (Li et al., 2020; Teo et al., 2021; Wong and Sanyal, 2020) and the unfolded protein response (UPR), which is a cellular stress response pathway initiated when the ER becomes overloaded with unfolded or misfolded proteins. Viruses can also target ER-associated degradation (ERAD), which recognises and degrades misfolded proteins at proteasomes as part of the ER quality control mechanisms. Here, flaviviruses activate inositol-requiring enzyme 1 (IRE1, encoded by ERN1) and activating transcription factor 6 (ATF6) UPR sensors to expand the ER while suppressing inflammatory signalling via proteasomal degradation of immune components (Ambrose and Mackenzie, 2013; Yu et al., 2006). Flaviviruses also induce lipophagy (the autophagic degradation of lipid droplets) while suppressing ER-phagy (degradation of the ER) to maintain stable ROs (Lan et al., 2023; Zhang et al., 2018). Meanwhile, coronavirus DMVs require non-lipidated LC3 proteins (a marker of autophagy), independent of the autophagy machinery (Reggiori et al., 2010).

Finally, the ER transmembrane protein TMEM41B has emerged as a key host factor in the replication of diverse +ssRNA viruses (Ji et al., 2022; Schneider et al., 2021). TMEM41B is involved in autophagosome formation and lipid mobilisation (Moretti et al., 2018). Although the exact mechanisms remain to be elucidated, TMEM41B might contribute to RO formation by regulating lipid flux and membrane remodelling (Huang et al., 2021) via its scramblase activity, facilitating membrane fluidity and curvature necessary for RO formation.

Like host proteins, host lipids are also essential components in the formation and function of ROs. Viruses actively manipulate host metabolism to ensure a steady supply of specific lipids required for membrane proliferation and to support the unique structural and energetic demands of viral replication (Heaton and Randall, 2011; Pombo and Sanyal, 2018). The lipid composition of ROs can be distinct from that of the host cell membranes from which they originate (summarised in Zhang et al., 2019), highlighting the importance of virus-directed lipid remodelling in RO biogenesis (see poster).

ROs form as an extension of host membrane-bound organelles but impose unique topological requirements, which are anticipated to be satisfied by a distinct lipid makeup that affects the physical properties of membranes and their protein composition. Membranes of both RO morphotypes are enriched in sterols, which contribute to membrane rigidity and curvature, allowing optimal RO environments for virus replication (Mackenzie et al., 2007; Roulin et al., 2014). Sterols can also impact the activity of viral proteins, such as the enterovirus 3CDpro protein, which is required for formation of the replication complex. Cholesterol organisation and abundance within ROs has been found to be crucial for 3CDpro processing kinetics (Ilnytska et al., 2013).

Glycerophospholipids, the main structural components of cellular membranes, also play important roles; they can impact membrane curvature and protein recruitment based on molecular shape, with cone-shaped lipids, such as phosphatidylethanolamine (PE) and phosphatidic acid, promoting negative curvature, and inverted cone-shaped lipids, such as lysophosphatidylcholine, promoting positive curvature (Chen et al., 2018). These properties are exploited to facilitate RO formation and function. For example, several +ssRNA viruses promote accumulation of phosphatidylcholine at ROs via localised synthesis (Zhang et al., 2016). PE, which is enriched in some ROs, affects tomato bushy stunt virus (TBSV) replication by facilitating viral protein enrichment and organisation (Xu and Nagy, 2016).

Phosphatidylinositols, although not abundant, can play significant roles in RO formation and function. PI4P is used by various +ssRNA viruses to recruit proteins and lipids to ROs, often via the lipid transport protein OSBP, which drives the counter exchange of PI4P for cholesterol (Arita, 2014; Mesmin et al., 2013). This mechanism is important for RO formation in viruses such as rhinoviruses (Roulin et al., 2014) and HCV (Wang et al., 2014).

Sphingolipids have been implicated in the replication of some +ssRNA viruses but have not been directly localised to ROs. Their utilisation can vary between viruses of the same genus. For example, WNV infection is enhanced by ceramide accumulation, whereas DENV replication is inhibited by ceramide (Aktepe et al., 2015; Martín-Acebes et al., 2014), highlighting the complex nature of virus–host lipid interactions in RO function.

Viruses also manipulate the distribution and composition of lipids within RO membranes by exploiting lipid transfer proteins and transporters to shuttle lipids between organelles and ROs (Hsu et al., 2010). For example, OSBPs are hijacked by various viruses, including picornaviruses and HCV, to facilitate the delivery of cholesterol to ROs (Arita et al., 2013; Barajas et al., 2014; Roulin et al., 2014; Wang et al., 2014). In picornavirus infection, OSBP is recruited to RO membranes, where it mediates the exchange of PI4P for cholesterol, leading to an enrichment of cholesterol in the RO (Roulin et al., 2014). Similarly, HCV exploits OSBP to create a PI4P gradient that drives the accumulation of cholesterol in the ROs (Wang et al., 2014). HCV also hijacks four-phosphate adaptor protein 2 (FAPP2, also known as PLEKHA8) to facilitate the transfer of glycosphingolipids to ROs, likely promoting membrane curvature and stability (Khan et al., 2014).

Accordingly, viruses modulate host lipid metabolism to meet the energy demands of viral replication (Diamond et al., 2010). The synthesis of new viral RNA and proteins requires a significant amount of energy, which can be derived from fatty acid oxidation (Heaton and Randall, 2010). For example, DENV has been shown to upregulate the expression of genes involved in fatty acid synthesis, ensuring a steady supply of ATP for replication (Heaton et al., 2010). An increase in fatty acid oxidation is accompanied by a corresponding decrease in lipid storage, as evidenced by the depletion of lipid droplets in DENV-infected cells (Heaton and Randall, 2010; Zhang et al., 2018). Similarly, HCV has been found to enhance the expression of genes involved in lipid catabolism, particularly those related to mitochondrial and peroxisomal fatty acid oxidation (Diamond et al., 2010). This metabolic reprogramming is essential for HCV replication, as treatment with saturated and mono-unsaturated fatty acids significantly increases viral RNA levels and protein expression (Kapadia and Chisari, 2005). As our knowledge of the lipid requirements and remodelling events that occur during viral replication continues to grow, it will be important to explore strategies for disrupting these virus–host lipid interactions as a means of inhibiting viral replication and preventing disease (see Box 2).

Box 2. ROs as a target for antiviral therapy

ROs present two main approaches for the development of antiviral therapies: targeting of viral components and targeting of host factors (see poster) (Li et al., 2023a). The targeting of host factors has the benefit of reduced sensitivity to viral adaptations and the possibility of affecting a variety of unrelated viruses if a shared host factor is central to their RO biology. Alternatively, direct-acting antiviral agents have proven successful in disrupting viral proteins involved in RO formation.

One example of a direct-acting antiviral treatment is a drug developed by Janssen, currently in phase II clinical trials, that targets the early association of DENV NS4B with NS3, a step needed for RO establishment (Goethals et al., 2023). Similarly, daclatasvir, which is directed at HCV NS5A, is used as an antiviral agent against HCV and impacts biogenesis of ROs independent of RNA replication (Berger et al., 2014; Nelson et al., 2015). It has been proposed to target domain I of NS5A, potentially affecting NS5A dimerisation and interaction with cyclophilin A (also known as PPIA). Importantly, inhibitors of cyclophilin A also act on MERS-CoV, highlighting the potential for transferable approaches to treat viruses with similar RO morphotypes (De Wilde et al., 2011).

Another direction is to target the lipid composition of ROs. This is demonstrated by the US Food and Drug Administration-approved FASN inhibitor, which reduces lung pathology caused by SARS-CoV-2 by inhibiting fatty acid and palmitoylated protein synthesis (Chu et al., 2021b). Inhibition of PI4KB has potential for broad-spectrum effects but is currently associated with high toxicity and development of resistance (Mejdrová et al., 2017). However, this remains a promising approach, as the downstream factor OSBP has been targeted with less associated cytotoxicity (Wang et al., 2014). Upstream modulation of RO cholesterol enrichment has been targeted by inhibition of sterol regulatory element-binding protein (SREBP), which has been shown to lead to increased survival of MERS-infected mice (Yuan et al., 2019). Meanwhile, the cholesterol-lowering drug lovastatin has been shown to inhibit the replication of several viruses, including HCV and DENV, although its effect depends on the cell system used (Boldescu et al., 2017). Collectively, these results suggest that altering lipid fluxes is a feasible avenue for future research.

ROs play a crucial role in shielding viral RNA from detection by cytoplasmic pattern recognition receptors such as RIG-I and MDA5 (also known as IFIH1), which are essential for activating innate immune responses, including the production of type I interferons (IFNs) and proinflammatory cytokines (Chow et al., 2018). For example, the HCV membranous web acts as a barrier that excludes RIG-I and MDA5, preventing sensing of the viral genome (Neufeldt et al., 2016). Similarly, the convoluted membranes of DENV have been shown to alter mitochondrial morphology and immune activation by MAVS at nascent ER–mitochondria sites (Chatel-Chaix et al., 2016). Other observations supporting the role of ROs in immune evasion include the sensitising effect of disrupting RO formation and the correlation of IFN induction with leakage of viral RNAs outside of the ROs (Scutigliani and Kikkert, 2017). For instance, treatment with an inhibitor of the yellow fever virus (YFV) NS4B protein not only blocks RO formation, but also induces a robust RIG-I-dependent IFN response, highlighting the importance of intact ROs in evading innate immune sensing (Gao et al., 2022). It is worth noting that enteroviruses can replicate in the absence of ROs, albeit at an altered location, and delayed RO formation under PI4KB inhibition does not lead to enhanced innate immune activation (Melia et al., 2017). Furthermore, +ssRNA viruses have multiple other means of counteracting innate immune sensing of viral RNAs, suggesting that they could be capable of propagating in the context of dysfunctional ROs.

From the host perspective, ROs are targets of immune responses. IFN-stimulated gene (ISG) products – such as IFI6, which acts at the ER to prevent flavivirus RO formation (Richardson et al., 2018), and cholesterol 25-hydroxylase, which depletes membrane cholesterol (Wang et al., 2020) – are examples of host factors that target ROs. IFN treatment has been shown to limit free cholesterol and vice versa (Teo et al., 2023). Additionally, the ISG protein viperin (also known as RSAD2) localises to the ROs of several viruses, including DENV and HCV, where it disrupts the lipid composition and membrane integrity (Helbig et al., 2013; Wang et al., 2012). ISG15 has been reported to interfere with SARS-CoV-2 replication; however, whether this is via modification of ROs merits further investigation (Fu et al., 2021).

The formation of ROs can trigger the activation of the UPR, which has been linked to the induction of inflammatory responses during viral infection (Zhang and Kaufman, 2008). For example, Zika virus (ZIKV) RO formation activates the IRE1 branch of the UPR, leading to production of type I IFNs and inhibition of viral replication (Tan et al., 2018).

Despite evidence supporting interactions between ROs and the immune response, clear links to the pathology of the associated diseases are not yet established. However, it is possible that ROs can be determinants of host range, as observed in MERS-CoV infection, where conserved mutations in the Nsp6 protein are associated with differences in viral replication efficiency between humans and camels (Dudas et al., 2018; So et al., 2023). Variations in RO formation and function might therefore contribute to the adaptation of viruses to different hosts.

The ER-localised enzyme placental alkaline phosphatase (ALPP) exemplifies how host factors involved in RO formation and function can affect disease presentation. ALPP stabilises the ZIKV replication complex and is primarily expressed in the placenta, potentially contributing to the severe congenital abnormalities associated with ZIKV infection during pregnancy (Chen et al., 2020b). The specific expression of ALPP in the placenta might explain the unique vulnerability of this tissue to ZIKV infection and the associated adverse pregnancy outcomes. In contrast, some proteins and their variants, such as an oligoadenylate synthetase 1 (OAS1) isoform that localises to the endomembrane system, can be protective against severe disease (Soveg et al., 2021).

RO formation can lead to dysregulation of cellular processes, such as apoptosis and autophagy, contributing to tissue damage and disease progression. Coronavirus RO formation can induce apoptosis in infected cells, which might contribute to the severe lung pathology observed in COVID-19 patients (Chu et al., 2021a). Similarly, ZIKV RO formation has been linked to dysregulation of autophagy, potentially contributing to neurological complications (Liang et al., 2016). In HCV infection, RO formation promotes the survival of infected cells by inhibiting apoptosis and promoting evasion of immune-mediated clearance, leading to chronic liver disease, cirrhosis and hepatocellular carcinoma (Bantel and Schulze-Osthoff, 2003). As our knowledge of the interplay between ROs and host immunity expands (Box 2), identifying novel therapeutic targets and developing strategies to harness the host immune system to combat viral infections will be crucial (see poster).

In this Cell Science at a Glance article, we have highlighted the diverse morphologies and origins of ROs across different +ssRNA virus families, emphasising the importance of virus–host interactions that drive RO formation and function. Despite significant advances in our understanding of the ultrastructural characteristics of ROs, several key knowledge gaps remain. Challenges include elucidating the precise mechanisms by which viral and host proteins interact to drive membrane remodelling and RO formation, the role of lipid composition and membrane dynamics in RO function and stability, and the specific contributions of membrane contact sites and lipid transfer proteins to RO biogenesis. Additionally, the mechanisms by which ROs evade or modulate host immune responses remain to be characterised. Addressing these knowledge gaps will require development of new experimental tools and model systems (Box 1), as well as collaborative efforts across multiple disciplines. Ultimately, a deeper understanding of RO biogenesis will not only provide fundamental insights into virus–host interactions but also inform the development of novel strategies for antiviral treatments.

Funding

Work in the Sanyal lab is supported by the Wellcome Trust (220776/Z/20/Z and 223107/Z/21/Z to S.S., and 225010/Z/22/Z to V.G.S.), the Biotechnology and Biological Sciences Research Council (BB/Y000307/1 to S.S.) and partially by InnoHK funding (C2i) administered by the Innovation and Technology Commission (to S.S.). Open Access funding provided by the University of Oxford. Deposited in PMC for immediate release.

High-resolution poster and poster panels

A high-resolution version of the poster and individual poster panels are available for downloading at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.262164#supplementary-data.

Akey
,
D. L.
,
Brown
,
W. C.
,
Dutta
,
S.
,
Konwerski
,
J.
,
Jose
,
J.
,
Jurkiw
,
T. J.
,
DelProposto
,
J.
,
Ogata
,
C. M.
,
Skiniotis
,
G.
,
Kuhn
,
R. J.
et al.
(
2014
).
Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system
.
Science
343
,
881
-
885
.
Aktepe
,
T. E.
,
Pham
,
H.
and
Mackenzie
,
J. M.
(
2015
).
Differential utilisation of ceramide during replication of the flaviviruses West Nile and dengue virus
.
Virology
484
,
241
-
250
.
Aktepe
,
T. E.
,
Liebscher
,
S.
,
Prier
,
J. E.
,
Simmons
,
C. P.
and
Mackenzie
,
J. M.
(
2017
).
The host protein reticulon 3.1A is utilized by flaviviruses to facilitate membrane remodelling
.
Cell Rep.
21
,
1639
-
1654
.
Ambrose
,
R. L.
and
Mackenzie
,
J. M.
(
2013
).
ATF6 Signaling is required for efficient west Nile virus replication by promoting cell survival and inhibition of innate immune responses
.
J. Virol.
87
,
2206
-
2214
.
Andronov
,
L.
,
Han
,
M.
,
Zhu
,
Y.
,
Balaji
,
A.
,
Roy
,
A. R.
,
Barentine
,
A. E. S.
,
Patel
,
P.
,
Garhyan
,
J.
,
Qi
,
L. S.
and
Moerner
,
W. E.
(
2024
).
Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles
.
Nat. Commun.
15
,
4644
.
Arita
,
M.
(
2014
).
Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure
.
Microbiol. Immunol.
58
,
239
-
256
.
Arita
,
M.
,
Kojima
,
H.
,
Nagano
,
T.
,
Okabe
,
T.
,
Wakita
,
T.
and
Shimizu
,
H.
(
2013
).
Oxysterol-binding protein family I is the target of minor Enviroxime-like compounds
.
J. Virol.
87
,
4252
-
4260
.
Bantel
,
H.
and
Schulze-Osthoff
,
K.
(
2003
).
Apoptosis in hepatitis C virus infection
.
Cell Death Differ.
10
,
S48
-
S58
.
Barajas
,
D.
,
Xu
,
K.
,
De Castro Martín
,
I. F.
,
Sasvari
,
Z.
,
Brandizzi
,
F.
,
Risco
,
C.
and
Nagy
,
P. D.
(
2014
).
Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites
.
PLoS Pathog.
10
,
e1004388
.
Belov
,
G. A.
and
van Kuppeveld
,
F. J.
(
2012
).
(+)RNA viruses rewire cellular pathways to build replication organelles
.
Curr. Opin. Virol.
2
,
740
-
747
.
Berger
,
C.
,
Romero-Brey
,
I.
,
Radujkovic
,
D.
,
Terreux
,
R.
,
Zayas
,
M.
,
Paul
,
D.
,
Harak
,
C.
,
Hoppe
,
S.
,
Gao
,
M.
,
Penin
,
F.
et al.
(
2014
).
Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis c virus–induced membranous replication factories, independent of RNA replication
.
Gastroenterology
147
,
1094
-
1105.e25
.
Boldescu
,
V.
,
Behnam
,
M. A. M.
,
Vasilakis
,
N.
and
Klein
,
C. D.
(
2017
).
Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond
.
Nat. Rev. Drug Discov.
16
,
565
-
586
.
Chatel-Chaix
,
L.
,
Cortese
,
M.
,
Romero-Brey
,
I.
,
Bender
,
S.
,
Neufeldt
,
C. J.
,
Fischl
,
W.
,
Scaturro
,
P.
,
Schieber
,
N.
,
Schwab
,
Y.
,
Fischer
,
B.
et al.
(
2016
).
Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses
.
Cell Host Microbe
20
,
342
-
356
.
Chen
,
Y.
,
Okur
,
H. I.
,
Lütgebaucks
,
C.
and
Roke
,
S.
(
2018
).
Zwitterionic and charged lipids form remarkably different structures on nanoscale oil droplets in aqueous solution
.
Langmuir
34
,
1042
-
1050
.
Chen
,
J.
,
Malone
,
B.
,
Llewellyn
,
E.
,
Grasso
,
M.
,
Shelton
,
P. M. M.
,
Olinares
,
P. D. B.
,
Maruthi
,
K.
,
Eng
,
E. T.
,
Vatandaslar
,
H.
,
Chait
,
B. T.
et al.
(
2020a
).
Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex
.
Cell
182
,
1560
-
1573.e13
.
Chen
,
J.
,
Chen
,
Z.
,
Liu
,
M.
,
Qiu
,
T.
,
Feng
,
D.
,
Zhao
,
C.
,
Zhang
,
S.
,
Zhang
,
X.
and
Xu
,
J.
(
2020b
).
Placental alkaline phosphatase promotes Zika virus replication by stabilizing viral proteins through BIP
.
mBio
11
,
e01716
-
e01720
.
Cho
,
K. F.
,
Branon
,
T. C.
,
Rajeev
,
S.
,
Svinkina
,
T.
,
Udeshi
,
N. D.
,
Thoudam
,
T.
,
Kwak
,
C.
,
Rhee
,
H.-W.
,
Lee
,
I.-K.
,
Carr
,
S. A.
et al.
(
2020
).
Split-TurboID enables contact-dependent proximity labeling in cells
.
Proc. Natl. Acad. Sci. U.S.A
117
,
12143
-
12154
.
Chow
,
K. T.
,
Gale
,
M.
and
Loo
,
Y.-M.
(
2018
).
RIG-I and other RNA sensors in antiviral immunity
.
Annu. Rev. Immunol
36
,
667
-
694
.
Chu
,
H.
,
Shuai
,
H.
,
Hou
,
Y.
,
Zhang
,
X.
,
Wen
,
L.
,
Huang
,
X.
,
Hu
,
B.
,
Yang
,
D.
,
Wang
,
Y.
,
Yoon
,
C.
et al.
(
2021a
).
Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity
.
Sci. Adv.
7
,
eabf8577
.
Chu
,
J.
,
Xing
,
C.
,
Du
,
Y.
,
Duan
,
T.
,
Liu
,
S.
,
Zhang
,
P.
,
Cheng
,
C.
,
Henley
,
J.
,
Liu
,
X.
,
Qian
,
C.
et al.
(
2021b
).
Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication
.
Nat. Metab.
3
,
1466
-
1475
.
Ci
,
Y.
,
Liu
,
Z.-Y.
,
Zhang
,
N.-N.
,
Niu
,
Y.
,
Yang
,
Y.
,
Xu
,
C.
,
Yang
,
W.
,
Qin
,
C.-F.
and
Shi
,
L.
(
2020
).
Zika NS1–induced ER remodeling is essential for viral replication
.
J. Cell Biol.
219
,
e201903062
.
Cortese
,
M.
,
Lee
,
J.-Y.
,
Cerikan
,
B.
,
Neufeldt
,
C. J.
,
Oorschot
,
V. M. J.
,
Köhrer
,
S.
,
Hennies
,
J.
,
Schieber
,
N. L.
,
Ronchi
,
P.
,
Mizzon
,
G.
et al.
(
2020
).
Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies
.
Cell Host Microbe
28
,
853
-
866.e5
.
Dahmane
,
S.
,
Kerviel
,
A.
,
Morado
,
D. R.
,
Shankar
,
K.
,
Ahlman
,
B.
,
Lazarou
,
M.
,
Altan-Bonnet
,
N.
and
Carlson
,
L.-A.
(
2022
).
Membrane-assisted assembly and selective secretory autophagy of enteroviruses
.
Nat. Commun.
13
,
5986
.
De Wilde
,
A. H.
,
Zevenhoven-Dobbe
,
J. C.
,
Van Der Meer
,
Y.
,
Thiel
,
V.
,
Narayanan
,
K.
,
Makino
,
S.
,
Snijder
,
E. J.
and
Van Hemert
,
M. J.
(
2011
).
Cyclosporin A inhibits the replication of diverse coronaviruses
.
J. Gen. Virol.
92
,
2542
-
2548
.
Den Boon
,
J. A.
and
Ahlquist
,
P.
(
2010
).
Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories
.
Annu. Rev. Microbiol.
64
,
241
-
256
.
Den Boon
,
J. A.
,
Nishikiori
,
M.
,
Zhan
,
H.
and
Ahlquist
,
P.
(
2024
).
Positive-strand RNA virus genome replication organelles: structure, assembly, control
.
Trends Genet.
40
,
681
-
693
.
Diamond
,
D. L.
,
Syder
,
A. J.
,
Jacobs
,
J. M.
,
Sorensen
,
C. M.
,
Walters
,
K.-A.
,
Proll
,
S. C.
,
McDermott
,
J. E.
,
Gritsenko
,
M. A.
,
Zhang
,
Q.
,
Zhao
,
R.
et al.
(
2010
).
Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics
.
PLoS Pathog.
6
,
e1000719
.
Dudas
,
G.
,
Carvalho
,
L. M.
,
Rambaut
,
A.
and
Bedford
,
T.
(
2018
).
MERS-CoV spillover at the camel-human interface
.
eLife
7
,
e31257
.
Ertel
,
K. J.
,
Benefield
,
D.
,
Castaño-Diez
,
D.
,
Pennington
,
J. G.
,
Horswill
,
M.
,
Den Boon
,
J. A.
,
Otegui
,
M. S.
and
Ahlquist
,
P.
(
2017
).
Cryo-electron tomography reveals novel features of a viral RNA replication compartment
.
eLife
6
,
e25940
.
Fu
,
Z.
,
Huang
,
B.
,
Tang
,
J.
,
Liu
,
S.
,
Liu
,
M.
,
Ye
,
Y.
,
Liu
,
Z.
,
Xiong
,
Y.
,
Zhu
,
W.
,
Cao
,
D.
et al.
(
2021
).
The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery
.
Nat. Commun.
12
,
488
.
Galitska
,
G.
,
Jassey
,
A.
,
Wagner
,
M. A.
,
Pollack
,
N.
,
Miller
,
K.
and
Jackson
,
W. T.
(
2023
).
Enterovirus D68 capsid formation and stability requires acidic compartments
.
mBio
14
,
e02141
-
e02123
.
Gao
,
Z.
,
Zhang
,
X.
,
Zhang
,
L.
,
Wu
,
S.
,
Ma
,
J.
,
Wang
,
F.
,
Zhou
,
Y.
,
Dai
,
X.
,
Bullitt
,
E.
,
Du
,
Y.
et al.
(
2022
).
A yellow fever virus NS4B inhibitor not only suppresses viral replication, but also enhances the virus activation of RIG-I-like receptor-mediated innate immune response
.
PLoS Pathog.
18
,
e1010271
.
Goellner
,
S.
,
Cerikan
,
B.
,
Cortese
,
M.
,
Neufeldt
,
C. J.
,
Haselmann
,
U.
and
Bartenschlager
,
R.
(
2020
).
Replication-independent generation and morphological analysis of flavivirus replication organelles
.
STAR Protocols
1
,
100173
.
Goethals
,
O.
,
Kaptein
,
S. J. F.
,
Kesteleyn
,
B.
,
Bonfanti
,
J.-F.
,
Van Wesenbeeck
,
L.
,
Bardiot
,
D.
,
Verschoor
,
E. J.
,
Verstrepen
,
B. E.
,
Fagrouch
,
Z.
,
Putnak
,
J. R.
et al.
(
2023
).
Blocking NS3–NS4B interaction inhibits dengue virus in non-human primates
.
Nature
615
,
678
-
686
.
Heaton
,
N. S.
and
Randall
,
G.
(
2010
).
Dengue virus-induced autophagy regulates lipid metabolism
.
Cell Host Microbe
8
,
422
-
432
.
Heaton
,
N. S.
and
Randall
,
G.
(
2011
).
Multifaceted roles for lipids in viral infection
.
Trends Microbiol.
19
,
368
-
375
.
Heaton
,
N. S.
,
Perera
,
R.
,
Berger
,
K. L.
,
Khadka
,
S.
,
LaCount
,
D. J.
,
Kuhn
,
R. J.
and
Randall
,
G.
(
2010
).
Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis
.
Proc. Natl. Acad. Sci. U.S.A
107
,
17345
-
17350
.
Helbig
,
K. J.
,
Carr
,
J. M.
,
Calvert
,
J. K.
,
Wati
,
S.
,
Clarke
,
J. N.
,
Eyre
,
N. S.
,
Narayana
,
S. K.
,
Fiches
,
G. N.
,
McCartney
,
E. M.
and
Beard
,
M. R.
(
2013
).
Viperin is induced following dengue virus type-2 (denv-2) infection and has anti-viral actions requiring the C-terminal end of viperin
.
PLoS Negl. Trop. Dis.
7
,
e2178
.
Hoenen
,
T.
,
Shabman
,
R. S.
,
Groseth
,
A.
,
Herwig
,
A.
,
Weber
,
M.
,
Schudt
,
G.
,
Dolnik
,
O.
,
Basler
,
C. F.
,
Becker
,
S.
and
Feldmann
,
H.
(
2012
).
Inclusion bodies are a site of ebolavirus replication
.
J. Virol.
86
,
11779
-
11788
.
Horner
,
S. M.
,
Liu
,
H. M.
,
Park
,
H. S.
,
Briley
,
J.
and
Gale
,
M.
(
2011
).
Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
.
Proc. Natl. Acad. Sci. U.S.A
108
,
14590
-
14595
.
Hsu
,
N.-Y.
,
Ilnytska
,
O.
,
Belov
,
G.
,
Santiana
,
M.
,
Chen
,
Y.-H.
,
Takvorian
,
P. M.
,
Pau
,
C.
,
Van Der Schaar
,
H.
,
Kaushik-Basu
,
N.
,
Balla
,
T.
et al.
(
2010
).
Viral reorganization of the secretory pathway generates distinct organelles for RNA replication
.
Cell
141
,
799
-
811
.
Huang
,
D.
,
Xu
,
B.
,
Liu
,
L.
,
Wu
,
L.
,
Zhu
,
Y.
,
Ghanbarpour
,
A.
,
Wang
,
Y.
,
Chen
,
F.-J.
,
Lyu
,
J.
,
Hu
,
Y.
et al.
(
2021
).
TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis
.
Cell Metab.
33
,
1655
-
1670.e8
.
Ilnytska
,
O.
,
Santiana
,
M.
,
Hsu
,
N.-Y.
,
Du
,
W.-L.
,
Chen
,
Y.-H.
,
Viktorova
,
E. G.
,
Belov
,
G.
,
Brinker
,
A.
,
Storch
,
J.
,
Moore
,
C.
et al.
(
2013
).
Enteroviruses harness the cellular endocytic machinery to remodel the host cell cholesterol landscape for effective viral replication
.
Cell Host Microbe
14
,
281
-
293
.
Jahn
,
R.
,
Cafiso
,
D. C.
and
Tamm
,
L. K.
(
2024
).
Mechanisms of SNARE proteins in membrane fusion
.
Nat. Rev. Mol. Cell Biol.
25
,
101
-
118
.
Ji
,
M.
,
Li
,
M.
,
Sun
,
L.
,
Zhao
,
H.
,
Li
,
Y.
,
Zhou
,
L.
,
Yang
,
Z.
,
Zhao
,
X.
,
Qu
,
W.
,
Xue
,
H.
et al.
(
2022
).
VMP1 and TMEM41B are essential for DMV formation during β-coronavirus infection
.
J. Cell Biol.
221
,
e202112081
.
Kallio
,
K.
,
Hellström
,
K.
,
Balistreri
,
G.
,
Spuul
,
P.
,
Jokitalo
,
E.
and
Ahola
,
T.
(
2013
).
Template RNA length determines the size of replication complex spherules for semliki forest virus
.
J. Virol.
87
,
9125
-
9134
.
Kapadia
,
S. B.
and
Chisari
,
F. V.
(
2005
).
Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids
.
Proc. Natl. Acad. Sci. U.S.A
102
,
2561
-
2566
.
Khan
,
I.
,
Katikaneni
,
D. S.
,
Han
,
Q.
,
Sanchez-Felipe
,
L.
,
Hanada
,
K.
,
Ambrose
,
R. L.
,
Mackenzie
,
J. M.
and
Konan
,
K. V.
(
2014
).
Modulation of hepatitis C virus genome replication by glycosphingolipids and four-phosphate adaptor protein 2
.
J. Virol.
88
,
12276
-
12295
.
Klein
,
S.
,
Cortese
,
M.
,
Winter
,
S. L.
,
Wachsmuth-Melm
,
M.
,
Neufeldt
,
C. J.
,
Cerikan
,
B.
,
Stanifer
,
M. L.
,
Boulant
,
S.
,
Bartenschlager
,
R.
and
Chlanda
,
P.
(
2020
).
SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography
.
Nat. Commun.
11
,
5885
.
Knoops
,
K.
,
Kikkert
,
M.
,
Worm
,
S. H. E. V. D.
,
Zevenhoven-Dobbe
,
J. C.
,
Van Der Meer
,
Y.
,
Koster
,
A. J.
,
Mommaas
,
A. M.
and
Snijder
,
E. J.
(
2008
).
SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum
.
PLoS Biol.
6
,
e226
.
Kopek
,
B. G.
,
Perkins
,
G.
,
Miller
,
D. J.
,
Ellisman
,
M. H.
and
Ahlquist
,
P.
(
2007
).
Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle
.
PLoS Biol.
5
,
e220
.
Kovalev
,
N.
,
Pogany
,
J.
and
Nagy
,
P. D.
(
2020
).
Reconstitution of an RNA virus replicase in artificial giant unilamellar vesicles supports full replication and provides protection for the double-stranded rna replication intermediate
.
J. Virol.
94
,
e00267
-
e00220
.
Lan
,
Y.
,
Van Leur
,
S. W.
,
Fernando
,
J. A.
,
Wong
,
H. H.
,
Kampmann
,
M.
,
Siu
,
L.
,
Zhang
,
J.
,
Li
,
M.
,
Nicholls
,
J. M.
and
Sanyal
,
S.
(
2023
).
Viral subversion of selective autophagy is critical for biogenesis of virus replication organelles
.
Nat. Commun.
14
,
2698
.
Li
,
M. Y.
,
Naik
,
T. S.
,
Siu
,
L. Y. L.
,
Acuto
,
O.
,
Spooner
,
E.
,
Wang
,
P.
,
Yang
,
X.
,
Lin
,
Y.
,
Bruzzone
,
R.
,
Ashour
,
J.
et al.
(
2020
).
Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles
.
Nat. Commun.
11
,
5189
.
Li
,
G.
,
Hilgenfeld
,
R.
,
Whitley
,
R.
and
De Clercq
,
E.
(
2023a
).
Therapeutic strategies for COVID-19: progress and lessons learned
.
Nat. Rev. Drug Discov.
22
,
449
-
475
.
Li
,
J.
,
Gui
,
Q.
,
Liang
,
F.-X.
,
Sall
,
J.
,
Zhang
,
Q.
,
Duan
,
Y.
,
Dhabaria
,
A.
,
Askenazi
,
M.
,
Ueberheide
,
B.
,
Stapleford
,
K. A.
et al.
(
2023b
).
The REEP5/TRAM1 complex binds SARS-CoV-2 NSP3 and promotes virus replication
.
J. Virol.
97
,
e00507
-
e00523
.
Liang
,
Q.
,
Luo
,
Z.
,
Zeng
,
J.
,
Chen
,
W.
,
Foo
,
S.-S.
,
Lee
,
S.-A.
,
Ge
,
J.
,
Wang
,
S.
,
Goldman
,
S. A.
,
Zlokovic
,
B. V.
et al.
(
2016
).
Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy
.
Cell Stem Cell
19
,
663
-
671
.
Limpens
,
R. W. A. L.
,
Van Der Schaar
,
H. M.
,
Kumar
,
D.
,
Koster
,
A. J.
,
Snijder
,
E. J.
,
Van Kuppeveld
,
F. J. M.
and
Bárcena
,
M.
(
2011
).
The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments
.
mBio
2
,
e00166
-
e00111
.
Mackenzie
,
J. M.
,
Khromykh
,
A. A.
and
Parton
,
R. G.
(
2007
).
Cholesterol manipulation by west nile virus perturbs the cellular immune response
.
Cell Host Microbe
2
,
229
-
239
.
Martín-Acebes
,
M. A.
,
Merino-Ramos
,
T.
,
Blázquez
,
A.-B.
,
Casas
,
J.
,
Escribano-Romero
,
E.
,
Sobrino
,
F.
and
Saiz
,
J.-C.
(
2014
).
The composition of west nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis
.
J. Virol.
88
,
12041
-
12054
.
McPhail
,
J. A.
,
Lyoo
,
H.
,
Pemberton
,
J. G.
,
Hoffmann
,
R. M.
,
Van Elst
,
W.
,
Strating
,
J. R.
,
Jenkins
,
M. L.
,
Stariha
,
J. T.
,
Powell
,
C. J.
,
Boulanger
,
M. J.
et al.
(
2020
).
Characterization of the c10orf76-PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication
.
EMBO Rep.
21
,
e48441
.
Mejdrová
,
I.
,
Chalupská
,
D.
,
Plačková
,
P.
,
Müller
,
C.
,
Šála
,
M.
,
Klíma
,
M.
,
Baumlová
,
A.
,
Hřebabecký
,
H.
,
Procházková
,
E.
,
Dejmek
,
M.
et al.
(
2017
).
Rational design of novel highly potent and selective phosphatidylinositol 4-Kinase IIIβ (PI4KB) inhibitors as broad-spectrum antiviral agents and tools for chemical biology
.
J. Med. Chem.
60
,
100
-
118
.
Melia
,
C. E.
,
Van Der Schaar
,
H. M.
,
Lyoo
,
H.
,
Limpens
,
R. W. A. L.
,
Feng
,
Q.
,
Wahedi
,
M.
,
Overheul
,
G. J.
,
Van Rij
,
R. P.
,
Snijder
,
E. J.
,
Koster
,
A. J.
et al.
(
2017
).
Escaping host factor PI4KB inhibition: enterovirus genomic RNA replication in the absence of replication organelles
.
Cell Rep.
21
,
587
-
599
.
Melia
,
C. E.
,
Van Der Schaar
,
H. M.
,
De Jong
,
A. W. M.
,
Lyoo
,
H. R.
,
Snijder
,
E. J.
,
Koster
,
A. J.
,
Van Kuppeveld
,
F. J. M.
and
Bárcena
,
M.
(
2018
).
The origin, dynamic morphology, and PI4P–independent formation of encephalomyocarditis virus replication organelles
.
mBio
9
,
e00420-18
.
Melia
,
C. E.
,
Peddie
,
C. J.
,
De Jong
,
A. W. M.
,
Snijder
,
E. J.
,
Collinson
,
L. M.
,
Koster
,
A. J.
,
Van Der Schaar
,
H. M.
,
Van Kuppeveld
,
F. J. M.
and
Bárcena
,
M.
(
2019
).
Origins of enterovirus replication organelles established by whole-cell electron microscopy
.
mBio
10
,
e00951
-
e00919
.
Mesmin
,
B.
,
Bigay
,
J.
,
Moser von Filseck
,
J.
,
Lacas-Gervais
,
S.
,
Drin
,
G.
and
Antonny
,
B.
(
2013
).
A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-golgi tether OSBP
.
Cell
155
,
830
-
843
.
Moretti
,
F.
,
Bergman
,
P.
,
Dodgson
,
S.
,
Marcellin
,
D.
,
Claerr
,
I.
,
Goodwin
,
J. M.
,
DeJesus
,
R.
,
Kang
,
Z.
,
Antczak
,
C.
,
Begue
,
D.
et al.
(
2018
).
TMEM 41B is a novel regulator of autophagy and lipid mobilization
.
EMBO Rep.
19
,
e45889
.
Nagy
,
P. D.
and
Pogany
,
J.
(
2012
).
The dependence of viral RNA replication on co-opted host factors
.
Nat. Rev. Microbiol.
10
,
137
-
149
.
Nagy
,
P. D.
,
Pogany
,
J.
and
Lin
,
J.-Y.
(
2014
).
How yeast can be used as a genetic platform to explore virus–host interactions: from ‘omics’ to functional studies
.
Trends Microbiol.
22
,
309
-
316
.
Nelson
,
D. R.
,
Cooper
,
J. N.
,
Lalezari
,
J. P.
,
Lawitz
,
E.
,
Pockros
,
P. J.
,
Gitlin
,
N.
,
Freilich
,
B. F.
,
Younes
,
Z. H.
,
Harlan
,
W.
,
Ghalib
,
R.
et al.
(
2015
).
All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study
.
Hepatology
61
,
1127
-
1135
.
Neufeldt
,
C. J.
,
Joyce
,
M. A.
,
Van Buuren
,
N.
,
Levin
,
A.
,
Kirkegaard
,
K.
,
Gale
,
M.
, Jr
,
Tyrrell
,
D. L. J.
and
Wozniak
,
R. W
. (
2016
).
The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites
.
PLoS Pathog.
12
,
e1005428
.
Neufeldt
,
C. J.
,
Cortese
,
M.
,
Scaturro
,
P.
,
Cerikan
,
B.
,
Wideman
,
J. G.
,
Tabata
,
K.
,
Moraes
,
T.
,
Oleksiuk
,
O.
,
Pichlmair
,
A.
and
Bartenschlager
,
R.
(
2019
).
ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly
.
Nat. Microbiol.
4
,
2416
-
2429
.
Nevers
,
Q.
,
Albertini
,
A. A.
,
Lagaudrière-Gesbert
,
C.
and
Gaudin
,
Y.
(
2020
).
Negri bodies and other virus membrane-less replication compartments
.
Biochim. Biophys. Acta Mol. Cell Res.
1867
,
118831
.
Nguyen-Dinh
,
V.
and
Herker
,
E.
(
2021
).
Ultrastructural features of membranous replication organelles induced by positive-stranded RNA viruses
.
Cells
10
,
2407
.
Oudshoorn
,
D.
,
Rijs
,
K.
,
Limpens
,
R. W. A. L.
,
Groen
,
K.
,
Koster
,
A. J.
,
Snijder
,
E. J.
,
Kikkert
,
M.
and
Bárcena
,
M.
(
2017
).
Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication
.
mBio
8
,
e01658
-
e01617
.
Park
,
S. J.
,
Jin
,
U.
and
Park
,
S. M.
(
2021
).
Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson's disease
.
PLoS Pathog.
17
,
e1010018
.
Piccoli
,
C.
,
Quarato
,
G.
,
Ripoli
,
M.
,
D'Aprile
,
A.
,
Scrima
,
R.
,
Cela
,
O.
,
Boffoli
,
D.
,
Moradpour
,
D.
and
Capitanio
,
N.
(
2009
).
HCV infection induces mitochondrial bioenergetic unbalance: causes and effects
.
Biochimica et Biophysica Acta (BBA) Bioenergetics
1787
,
539
-
546
.
Pombo
,
J. P.
and
Sanyal
,
S.
(
2018
).
Perturbation of intracellular cholesterol and fatty acid homeostasis during flavivirus infections
.
Front Immunol
9
,
1276
.
Rathnayake
,
A. D.
,
Zheng
,
J.
,
Kim
,
Y.
,
Perera
,
K. D.
,
Mackin
,
S.
,
Meyerholz
,
D. K.
,
Kashipathy
,
M. M.
,
Battaile
,
K. P.
,
Lovell
,
S.
,
Perlman
,
S.
et al.
(
2020
).
3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice
.
Sci. Transl. Med.
12
,
eabc5332
.
Reggiori
,
F.
,
Monastyrska
,
I.
,
Verheije
,
M. H.
,
Calì
,
T.
,
Ulasli
,
M.
,
Bianchi
,
S.
,
Bernasconi
,
R.
,
De Haan
,
C. A. M.
and
Molinari
,
M.
(
2010
).
Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication
.
Cell Host Microbe
7
,
500
-
508
.
Reiss
,
S.
,
Rebhan
,
I.
,
Backes
,
P.
,
Romero-Brey
,
I.
,
Erfle
,
H.
,
Matula
,
P.
,
Kaderali
,
L.
,
Poenisch
,
M.
,
Blankenburg
,
H.
,
Hiet
,
M.-S.
et al.
(
2011
).
Recruitment and activation of a lipid kinase by hepatitis C Virus NS5A is essential for integrity of the membranous replication compartment
.
Cell Host Microbe
9
,
32
-
45
.
Richards
,
A. L.
and
Jackson
,
W. T.
(
2012
).
Intracellular vesicle acidification promotes maturation of infectious poliovirus particles
.
PLoS Pathog.
8
,
e1003046
.
Richardson
,
R. B.
,
Ohlson
,
M. B.
,
Eitson
,
J. L.
,
Kumar
,
A.
,
McDougal
,
M. B.
,
Boys
,
I. N.
,
Mar
,
K. B.
,
De La Cruz-Rivera
,
P. C.
,
Douglas
,
C.
,
Konopka
,
G.
et al.
(
2018
).
A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication
.
Nat. Microbiol.
3
,
1214
-
1223
.
Romero-Brey
,
I.
,
Merz
,
A.
,
Chiramel
,
A.
,
Lee
,
J.-Y.
,
Chlanda
,
P.
,
Haselman
,
U.
,
Santarella-Mellwig
,
R.
,
Habermann
,
A.
,
Hoppe
,
S.
,
Kallis
,
S.
et al.
(
2012
).
Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication
.
PLoS Pathog.
8
,
e1003056
.
Roulin
,
P. S.
,
Lötzerich
,
M.
,
Torta
,
F.
,
Tanner
,
L. B.
,
van Kuppeveld
,
F. J. M.
,
Wenk
,
M. R.
and
Greber
,
U. F.
(
2014
).
Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-golgi interface
.
Cell Host Microbe
16
,
677
-
690
.
Sasvari
,
Z.
,
Kovalev
,
N.
,
Gonzalez
,
P. A.
,
Xu
,
K.
and
Nagy
,
P. D.
(
2018
).
Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment
.
PLoS Pathog.
14
,
e1007028
.
Scherer
,
K. M.
,
Mascheroni
,
L.
,
Carnell
,
G. W.
,
Wunderlich
,
L. C. S.
,
Makarchuk
,
S.
,
Brockhoff
,
M.
,
Mela
,
I.
,
Fernandez-Villegas
,
A.
,
Barysevich
,
M.
,
Stewart
,
H.
et al.
(
2022
).
SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress
.
Sci. Adv.
8
,
eabl4895
.
Schneider
,
W. M.
,
Luna
,
J. M.
,
Hoffmann
,
H.-H.
,
Sánchez-Rivera
,
F. J.
,
Leal
,
A. A.
,
Ashbrook
,
A. W.
,
Le Pen
,
J.
,
Ricardo-Lax
,
I.
,
Michailidis
,
E.
,
Peace
,
A.
et al.
(
2021
).
Genome-scale identification of SARS-CoV-2 and Pan-coronavirus host factor networks
.
Cell
184
,
120
-
132.e14
.
Schoggins
,
J. W.
(
2014
).
Interferon-stimulated genes: roles in viral pathogenesis
.
Curr. Opin. Virol.
6
,
40
-
46
.
Schultz
,
C.
,
Farley
,
S. E.
and
Tafesse
,
F. G.
(
2022
).
“Flash & Click”: multifunctionalized lipid derivatives as tools to study viral infections
.
J. Am. Chem. Soc.
144
,
13987
-
13995
.
Schwartz
,
M.
,
Chen
,
J.
,
Lee
,
W.-M.
,
Janda
,
M.
and
Ahlquist
,
P.
(
2004
).
Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication
.
Proc. Natl. Acad. Sci. U.S.A
101
,
11263
-
11268
.
Scutigliani
,
E. M.
and
Kikkert
,
M.
(
2017
).
Interaction of the innate immune system with positive-strand RNA virus replication organelles
.
Cytokine Growth Factor. Rev.
37
,
17
-
27
.
Shiryaev
,
S. A.
,
Cieplak
,
P.
,
Cheltsov
,
A.
,
Liddington
,
R. C.
and
Terskikh
,
A. V.
(
2023
).
Dual function of Zika virus NS2B-NS3 protease
.
PLoS Pathog.
19
,
e1011795
.
Snijder
,
E. J.
,
Limpens
,
R. W. A. L.
,
De Wilde
,
A. H.
,
De Jong
,
A. W. M.
,
Zevenhoven-Dobbe
,
J. C.
,
Maier
,
H. J.
,
Faas
,
F. F. G. A.
,
Koster
,
A. J.
and
Bárcena
,
M.
(
2020
).
A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis
.
PLoS Biol.
18
,
e3000715
.
So
,
R. T. Y.
,
Chu
,
D. K. W.
,
Hui
,
K. P. Y.
,
Mok
,
C. K. P.
,
Shum
,
M. H. H.
,
Sanyal
,
S.
,
Nicholls
,
J. M.
,
Ho
,
J. C. W.
,
Cheung
,
M.
,
Ng
,
K.
et al.
(
2023
).
Amino acid substitution L232F in non-structural protein 6 identified as a possible human-adaptive mutation in clade B MERS coronaviruses
.
J. Virol.
97
,
e01369
-
e01323
.
Soveg
,
F. W.
,
Schwerk
,
J.
,
Gokhale
,
N. S.
,
Cerosaletti
,
K.
,
Smith
,
J. R.
,
Pairo-Castineira
,
E.
,
Kell
,
A. M.
,
Forero
,
A.
,
Zaver
,
S. A.
,
Esser-Nobis
,
K.
et al.
(
2021
).
Endomembrane targeting of human OAS1 p46 augments antiviral activity
.
eLife
10
,
e71047
.
Strating
,
J. R.
and
Van Kuppeveld
,
F. J.
(
2017
).
Viral rewiring of cellular lipid metabolism to create membranous replication compartments
.
Curr. Opin. Cell Biol.
47
,
24
-
33
.
Suhy
,
D. A.
,
Giddings
,
T. H.
and
Kirkegaard
,
K.
(
2000
).
Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles
.
J. Virol.
74
,
8953
-
8965
.
Sunagawa
,
J.
,
Komorizono
,
R.
,
Park
,
H.
,
Hart
,
W. S.
,
Thompson
,
R. N.
,
Makino
,
A.
,
Tomonaga
,
K.
,
Iwami
,
S.
and
Yamaguchi
,
R.
(
2023
).
Contact-number-driven virus evolution: A multi-level modeling framework for the evolution of acute or persistent RNA virus infection
.
PLoS Comput. Biol.
19
,
e1011173
.
Tan
,
Z.
,
Zhang
,
W.
,
Sun
,
J.
,
Fu
,
Z.
,
Ke
,
X.
,
Zheng
,
C.
,
Zhang
,
Y.
,
Li
,
P.
,
Liu
,
Y.
,
Hu
,
Q.
et al.
(
2018
).
ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells
.
J. Neuroinflammation
15
,
275
.
Tang
,
W.-F.
,
Yang
,
S.-Y.
,
Wu
,
B.-W.
,
Jheng
,
J.-R.
,
Chen
,
Y.-L.
,
Shih
,
C.-H.
,
Lin
,
K.-H.
,
Lai
,
H.-C.
,
Tang
,
P.
and
Horng
,
J.-T.
(
2007
).
Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication
.
J. Biol. Chem.
282
,
5888
-
5898
.
Teo
,
Q. W.
,
Leur
,
S. W.
and
Sanyal
,
S.
(
2021
).
Escaping the Lion's Den: redirecting autophagy for unconventional release and spread of viruses
.
FEBS J.
288
,
3913
-
3927
.
Teo
,
Q. W.
,
Wong
,
H. H.
,
Heunis
,
T.
,
Stancheva
,
V.
,
Hachim
,
A.
,
Lv
,
H.
,
Siu
,
L.
,
Ho
,
J.
,
Lan
,
Y.
,
Mok
,
C. K. P.
et al.
(
2023
).
Usp25-Erlin1/2 activity limits cholesterol flux to restrict virus infection
.
Dev. Cell
58
,
2495
-
2509.e6
.
Trahey
,
M.
,
Oh
,
H. S.
,
Cameron
,
C. E.
and
Hay
,
J. C.
(
2012
).
Poliovirus infection transiently increases COPII vesicle budding
.
J. Virol.
86
,
9675
-
9682
.
Van Hemert
,
M. J.
,
Van Den Worm
,
S. H. E.
,
Knoops
,
K.
,
Mommaas
,
A. M.
,
Gorbalenya
,
A. E.
and
Snijder
,
E. J.
(
2008a
).
SARS-Coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro
.
PLoS Pathog.
4
,
e1000054
.
Van Hemert
,
M. J.
,
De Wilde
,
A. H.
,
Gorbalenya
,
A. E.
and
Snijder
,
E. J.
(
2008b
).
The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor
.
J. Biol. Chem.
283
,
16525
-
16536
.
Wang
,
S.
,
Wu
,
X.
,
Pan
,
T.
,
Song
,
W.
,
Wang
,
Y.
,
Zhang
,
F.
and
Yuan
,
Z.
(
2012
).
Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33
.
J. Gen. Virol.
93
,
83
-
92
.
Wang
,
H.
,
Perry
,
J. W.
,
Lauring
,
A. S.
,
Neddermann
,
P.
,
De Francesco
,
R.
and
Tai
,
A. W.
(
2014
).
Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking
.
Gastroenterology
146
,
1373
-
1385.e11
.
Wang
,
S.
,
Li
,
W.
,
Hui
,
H.
,
Tiwari
,
S. K.
,
Zhang
,
Q.
,
Croker
,
B. A.
,
Rawlings
,
S.
,
Smith
,
D.
,
Carlin
,
A. F.
and
Rana
,
T. M.
(
2020
).
Cholesterol 25-Hydroxylase inhibits SARS -CoV-2 and other coronaviruses by depleting membrane cholesterol
.
EMBO J.
39
,
e106057
.
Welsch
,
S.
,
Miller
,
S.
,
Romero-Brey
,
I.
,
Merz
,
A.
,
Bleck
,
C. K. E.
,
Walther
,
P.
,
Fuller
,
S. D.
,
Antony
,
C.
,
Krijnse-Locker
,
J.
and
Bartenschlager
,
R.
(
2009
).
Composition and three-dimensional architecture of the dengue virus replication and assembly sites
.
Cell Host Microbe
5
,
365
-
375
.
Williams
,
J. M.
,
Chen
,
Y.-J.
,
Cho
,
W. J.
,
Tai
,
A. W.
and
Tsai
,
B.
(
2023
).
Reticulons promote formation of ER-derived double-membrane vesicles that facilitate SARS-CoV-2 replication
.
J. Cell Biol.
222
,
e202203060
.
Wolff
,
G.
,
Limpens
,
R. W. A. L.
,
Zevenhoven-Dobbe
,
J. C.
,
Laugks
,
U.
,
Zheng
,
S.
,
de Jong
,
A. W. M.
,
Koning
,
R. I.
,
Agard
,
D. A.
,
Grünewald
,
K.
,
Koster
,
A. J.
et al.
(
2020a
).
A molecular pore spans the double membrane of the coronavirus replication organelle
.
Science
369
,
1395
-
1398
.
Wolff
,
G.
,
Melia
,
C. E.
,
Snijder
,
E. J.
and
Bárcena
,
M.
(
2020b
).
Double-membrane vesicles as platforms for viral replication
.
Trends Microbiol.
28
,
1022
-
1033
.
Wong
,
H. H.
and
Sanyal
,
S.
(
2020
).
Manipulation of autophagy by (+) RNA viruses
.
Semin. Cell Dev. Biol.
101
,
3
-
11
.
Xu
,
K.
and
Nagy
,
P. D.
(
2014
).
Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication
.
Curr. Opin. Virol.
9
,
119
-
126
.
Xu
,
K.
and
Nagy
,
P. D.
(
2016
).
Enrichment of phosphatidylethanolamine in viral replication compartments via co-opting the endosomal Rab5 small GTPase by a positive-strand RNA virus
.
PLoS Biol.
14
,
e2000128
.
Yu
,
C.-Y.
,
Hsu
,
Y.-W.
,
Liao
,
C.-L.
and
Lin
,
Y.-L.
(
2006
).
Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress
.
J. Virol.
80
,
11868
-
11880
.
Yuan
,
S.
,
Chu
,
H.
,
Chan
,
J. F.-W.
,
Ye
,
Z.-W.
,
Wen
,
L.
,
Yan
,
B.
,
Lai
,
P.-M.
,
Tee
,
K.-M.
,
Huang
,
J.
,
Chen
,
D.
et al.
(
2019
).
SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target
.
Nat. Commun.
10
,
120
.
Zhang
,
K.
and
Kaufman
,
R. J.
(
2008
).
From endoplasmic-reticulum stress to the inflammatory response
.
Nature
454
,
455
-
462
.
Zhang
,
J.
,
Zhang
,
Z.
,
Chukkapalli
,
V.
,
Nchoutmboube
,
J. A.
,
Li
,
J.
,
Randall
,
G.
,
Belov
,
G. A.
and
Wang
,
X.
(
2016
).
Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites
.
Proc. Natl. Acad. Sci. U.S.A
113
,
E1064
-
E1073
.
Zhang
,
J.
,
Lan
,
Y.
,
Li
,
M. Y.
,
Lamers
,
M. M.
,
Fusade-Boyer
,
M.
,
Klemm
,
E.
,
Thiele
,
C.
,
Ashour
,
J.
and
Sanyal
,
S.
(
2018
).
Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production
.
Cell Host Microbe
23
,
819
-
831.e5
.
Zhang
,
Z.
,
He
,
G.
,
Filipowicz
,
N. A.
,
Randall
,
G.
,
Belov
,
G. A.
,
Kopek
,
B. G.
and
Wang
,
X.
(
2019
).
Host lipids in positive-strand RNA virus genome replication
.
Front. Microbiol.
10
,
286
.
Zimmermann
,
L.
,
Zhao
,
X.
,
Makroczyova
,
J.
,
Wachsmuth-Melm
,
M.
,
Prasad
,
V.
,
Hensel
,
Z.
,
Bartenschlager
,
R.
and
Chlanda
,
P.
(
2023
).
SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle
.
Nat. Commun.
14
,
7894
.

Competing interests

The authors declare no competing or financial interests.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.