Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.

As major constituents of biological membranes, phospholipids define cellular and subcellular environments by providing physical barriers and influencing the structure and function of membrane proteins (Holthuis and Menon, 2014; Lee, 2004). In this Review, we will focus on phospholipids of mitochondria, double membrane-bound organelles that house many fundamental biochemical processes, including energy generation. Mitochondrial membranes are composed of all major classes of phospholipids – phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG) and cardiolipin (CL) – which are either biosynthesized within or imported into mitochondria (Horvath and Daum, 2013). The importance of phospholipids in mitochondrial function and human health is evident from rare but devastating mitochondrial disorders, such as Barth syndrome, which are caused by mutations in phospholipid biosynthetic enzymes, (Lu and Claypool et al., 2015). Here, we describe recent advances in our understanding of mitochondrial phospholipid metabolism and their roles in the pathology of rare mitochondrial disorders.

Phospholipids are amphipathic molecules that consist of a glycerol backbone to which a hydrophilic headgroup and hydrophobic fatty acyl chains are attached (Fig. 1A). Variations in the head group determine the size, shape and charge of the phospholipid (Fig. 1B,C). There are also differences in the length and degree of unsaturation of the fatty acyl chains, which give rise to a staggering array of phospholipid species (Sud et al., 2007). The overall shape of each phospholipid molecule is dependent on the cross-sectional area of the head group and the acyl chains (Fig. 1B) (Basu Ball et al., 2018). For example, in the case of PC, the most abundant mitochondrial phospholipid, the area of the cross-section of the head group and the acyl chains is similar, resulting in an overall cylindrical shape (Fig. 1B). These cylindrically shaped molecules self-assemble into lamellar structures typically seen in phospholipid bilayers. When the cross-sectional area of the head group is smaller than their acyl chains, as in the case of PE, the second most abundant mitochondrial phospholipid (Fig. 1B), it results in a cone-shaped molecule that tends to form non-bilayer structures. The phospholipid composition and relative ratio of bilayer to non-bilayer phospholipids in mitochondrial membranes is evolutionarily conserved (Fig. 1C). The diversity of phospholipid species determines the biophysical and biochemical properties of membranes, which in turn influences the behavior of membrane proteins as described below.

Fig. 1.

The biochemical and biophysical properties of mitochondrial phospholipids. (A) Structure of a typical glycerophospholipid. (B) Structure of the ‘X’ moiety and illustration of its effect on the overall shape of the phospholipid. Cardiolipin (CL) is a unique dimeric mitochondrial phospholipid where two phosphatidic acids (PA) are linked by glycerol. (C) The major classes of phospholipids, their charge, shape and relative proportions in mitochondria from the indicated sources. The phospholipid compositions are from Daum (1985), de Kroon et al. (1997), and Zinser and Daum (1995) as indicated. nd, not determined. (D) The surface charge density of the bilayer is dependent on the charge of each phospholipid. (E) Hydrophobic helices of proteins in contact with the acyl chains of phospholipids correlate with the thickness of the membrane. (F) Fluidity depends on the degree of saturation of the fatty acyl chains of phospholipids. (G) The presence of non-bilayer phospholipids imparts curvature on the lipid bilayer. (H) A large negative pressure localized at the polar-apolar interface between the head groups and acyl chains is balanced by a positive lateral pressure in the acyl chain region. (I) Phospholipid polymorphism determines the physical properties of the membrane.

Fig. 1.

The biochemical and biophysical properties of mitochondrial phospholipids. (A) Structure of a typical glycerophospholipid. (B) Structure of the ‘X’ moiety and illustration of its effect on the overall shape of the phospholipid. Cardiolipin (CL) is a unique dimeric mitochondrial phospholipid where two phosphatidic acids (PA) are linked by glycerol. (C) The major classes of phospholipids, their charge, shape and relative proportions in mitochondria from the indicated sources. The phospholipid compositions are from Daum (1985), de Kroon et al. (1997), and Zinser and Daum (1995) as indicated. nd, not determined. (D) The surface charge density of the bilayer is dependent on the charge of each phospholipid. (E) Hydrophobic helices of proteins in contact with the acyl chains of phospholipids correlate with the thickness of the membrane. (F) Fluidity depends on the degree of saturation of the fatty acyl chains of phospholipids. (G) The presence of non-bilayer phospholipids imparts curvature on the lipid bilayer. (H) A large negative pressure localized at the polar-apolar interface between the head groups and acyl chains is balanced by a positive lateral pressure in the acyl chain region. (I) Phospholipid polymorphism determines the physical properties of the membrane.

Electrostatics

The electrical charge on an individual phospholipid molecule is determined by the type of the head group (Fig. 1C), which in turn dictates the membrane surface charge (Fig. 1D). In the case of mitochondria, surface charge densities on the inner and outer leaflet of the inner mitochondrial membrane (IMM) are likely influenced by asymmetric distribution of phospholipids (Horvath and Daum, 2013) and differences in the pH of the mitochondrial matrix and the intermembrane space (IMS).

Thickness

Membrane thickness is determined by the acyl chain length and its degree of saturation (Tillman and Cascio, 2003). Because of the high energetic cost of exposing the hydrophobic region of either the fatty acyl chain or the membrane protein to the aqueous environment, the thickness of the bilayer is expected to match the thickness of the hydrophobic regions of the membrane proteins (Lee, 2004) (Fig. 1E). This hydrophobic coupling can occur through distortion of the bilayer, the protein or both. The stability of the human voltage-dependent anion channel (VDAC2), an abundant outer mitochondrial membrane (OMM) protein, depends on membrane thickness provided by dipalmitoyl PC, highlighting the importance of hydrophobic coupling (Srivastava et al., 2018).

Fluidity or viscosity

Membrane fluidity or viscosity refers to the freedom of movement of a lipid or protein within the bilayer (Tillman and Cascio, 2003). It strongly correlates with the level of unsaturated fatty acids; the higher the proportion of unsaturated fatty acids, the greater the fluidity (Fig. 1F). Mitochondrial membrane fluidity can impact the function of the respiratory chain. For example, isolated mitochondria from yeast mutants engineered to produce a greater amount of unsaturated fatty acids showed increased respiration (Budin et al., 2018). This increased respiration could be attributed to increased mobility of electron carriers, such as ubiquinone, between respiratory enzyme complexes.

Curvature stress

When non-bilayer-forming phospholipids are forced to stay in the bilayer, they impart curvature stress, which can be released by positive or negative curvature of the membrane (Fig. 1G). In vitro studies and molecular dynamics simulations have shown that CL, a cone-shaped phospholipid that is almost exclusively found in mitochondrial membranes, has the propensity to accumulate in regions of membranes that exhibit high negative curvature (Beltran-Heredia et al., 2019; Boyd et al., 2017). In the IMM, which exhibits numerous tubular invaginations referred to as cristae, one would expect a higher proportion of CL. Indeed, CL is associated with oxidative phosphorylation complexes present in cristae (Cogliati et al., 2013).

Lateral pressure profile

The close packing of different phospholipids in the membrane results in mechanical frustrations, the pressure of which varies across the depth of the membrane and is referred to as lateral pressure profile (π) (van den Brink-van der Laan et al., 2004) (Fig. 1H). The lateral pressure profile depends on other biophysical properties of membranes and has been proposed to influence protein conformation and function (Marsh, 2007). For example, a new study has shown that reactive aldehydes produced by reactive oxygen species covalently modify the PE headgroup, reshaping PE and altering the lateral pressure profile of membranes. This in turn impacts the function of mitochondrial uncoupling protein 1 (UCP1) and adenine nucleotide translocator 1 (ANT1) (Jovanovic et al., 2022).

Although we have described each of the biophysical and biochemical properties of the phospholipids separately, it should be stressed that these properties together determine membrane function (Fig. 1I).

Mitochondria are semi-autonomous in phospholipid biosynthesis – they can biosynthesize PA, PG, CL and PE in situ (Fig. 2), but other phospholipids, such as PC, PS and PI must be imported. Many of the mitochondrial phospholipid biosynthetic enzymes are conserved from yeast to mammals (Table 1), highlighting the conserved nature of these pathways.

Fig. 2.

Mitochondrial phospholipid biosynthesis pathways. The mammalian biosynthetic pathways of the four major classes of phospholipids (PA, PG, CL, and PE) that are biosynthesized within mitochondria. Enzymes associated with rare human genetic disorders are depicted in red. Dashed arrows represent phospholipid transport between membranes. A list of mitochondrial phospholipid biosynthetic enzymes in mammals and the yeast Saccharomyces cerevisiae is presented in Table 1.

Fig. 2.

Mitochondrial phospholipid biosynthesis pathways. The mammalian biosynthetic pathways of the four major classes of phospholipids (PA, PG, CL, and PE) that are biosynthesized within mitochondria. Enzymes associated with rare human genetic disorders are depicted in red. Dashed arrows represent phospholipid transport between membranes. A list of mitochondrial phospholipid biosynthetic enzymes in mammals and the yeast Saccharomyces cerevisiae is presented in Table 1.

Table 1.

Mitochondrial phospholipid biosynthetic enzymes in mammals and yeast Saccharomyces cerevisiae

Mitochondrial phospholipid biosynthetic enzymes in mammals and yeast Saccharomyces cerevisiae
Mitochondrial phospholipid biosynthetic enzymes in mammals and yeast Saccharomyces cerevisiae

Phosphatidic acid

As the simplest phospholipid, PA serves as a substrate for the biosynthesis of other phospholipids. PA biosynthesis primarily occurs in the endoplasmic reticulum (ER). Within mitochondria, its biosynthesis occurs via three different pathways (Fig. 2). The first involves sequential acylation of glycerol-3-phosphate (G3P) by glycerophosphate acyltransferases (GPAT1 and GPAT2) and acylglycerophosphate acyltransferases (AGPAT4 and AGPAT5) on the OMM (Bradley et al., 2015; Lewin et al., 2004) (Fig. 2; Table 1). The second pathway involves phosphorylation of diacylglycerol by acylglycerol kinase (AGK) to form PA in the IMM (Bektas et al., 2005). The third pathway for PA biosynthesis is the hydrolysis of CL by MitoPLD (also known as PLD6) in the OMM (Choi et al., 2006).

Phosphatidylglycerol

PG biosynthesis occurs in the IMM from PA (Fig. 2). In the first step, PA is converted into cytidine diphosphate diacylglycerol (CDP-DAG) in a reaction catalyzed by phosphatidate cytidylyltransferase called TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) (Blunsom et al., 2018). In the rate-limiting second step, phosphatidylglycerol phosphate synthase (PGS1) converts CDP-DAG into phosphatidylglycerol phosphate (PGP) through the transfer of the phosphatidyl group from CDP-DAG onto the G3P (Cao and Hatch, 1994). Finally, PGP is dephosphorylated to PG by a phosphatase called protein tyrosine phosphatase mitochondrial 1 (PTPMT1) (Zhang et al., 2011).

Cardiolipin

Cardiolipin is almost exclusively present in mitochondria. Nascent CL (CLn) is biosynthesized via condensation of PG and CDP-DAG in a reaction catalyzed by cardiolipin synthase (CRLS1) (Houtkooper et al., 2006) (Fig. 2). CLn, which is characterized by the presence of saturated acyl chains, undergoes remodeling by sequential deacylation and reacylation reactions to form mature CL (CLm), which is enriched in unsaturated fatty acyl chains (Oemer et al., 2020). In yeast, the phospholipase Cld1 has been shown to preferentially hydrolyze saturated fatty acyl chains from CLn to form monolyso-CL (MLCL) (Beranek et al., 2009). Analogous phospholipase(s) have not yet been identified in mammals (Table 1). MLCL is then re-acylated by the transacylase TAFAZZIN (Xu et al., 2003), where PC, and to a lesser extent PE, serve as an acyl chain donor (Xu et al., 2006). Apart from TAFAZZIN-mediated transacylation, CL remodeling can also occur via the acyl transferases ALCAT1 or MLCL AT1 (also known as HADHA) (Cao et al., 2004; Taylor and Hatch, 2009). The contribution of these alternative routes to CL remodeling is unclear, but the fact that TAFAZZIN mutations lead to drastic phenotypes in Barth syndrome (BTHS) individuals suggest that they cannot compensate for the loss of TAFAZZIN (Bione et al., 1996). Notably, the fatty acyl chain arrangement in CL is not stochastic. Cardiac mitochondria are mainly dominated by tetralineoyl CL (18:2)4 species, whereas brain mitochondria contain a multiplicity of CL species. The various CL compositions in different tissues has been attributed to the levels of linoleoyl (18:2) and oleoyl (18:1) fatty acyl species in other phospholipids in those tissues (Oemer et al., 2020).

Phosphatidylethanolamine

PS imported from the ER serves as a precursor for mitochondrial PE biosynthesis, which is carried out by the IMM-localized PS decarboxylase (PISD) (Hovius et al., 1992) (Fig. 2). Recently, the yeast PS decarboxylase (Psd1) was shown to localize to both the ER and mitochondria, where it contributes to the formation of functionally distinct pool of PE (Friedman et al., 2018). Notably, PE biosynthesized outside mitochondria can also be imported, as shown in yeast cells lacking Psd1 (Baker et al., 2016; Calzada et al., 2019). Importantly, rescue of the yeast psd1Δ respiratory growth phenotype requires stimulation of the non-mitochondrial pathway of PE biosynthesis via ethanolamine supplementation (Baker et al., 2016). In mammals, a lack of PISD results in embryonic lethality (Steenbergen et al., 2005), suggesting that, under basal conditions, non-mitochondrial PE cannot compensate for the lack of mitochondrial PE biosynthesis during embryonic development.

To achieve mitochondrial phospholipid homeostasis, both inter-organellar phospholipid trafficking between the ER and mitochondria, as well as intraorganellar phospholipid transport between the OMM and the IMM, is required (Fig. 3). Mitochondria must import PS, PC and PI, because biosynthetic enzymes for these phospholipids are not present in situ (Fig. 2). Conversely, PE biosynthesized within mitochondria is exported to other subcellular compartments, although the mechanism of its export remains to be determined (Fig. 3). Phospholipid transport to mitochondria presents a unique challenge because mitochondria are not connected with other subcellular organelles via the vesicular trafficking pathway, and thus cannot acquire phospholipids via vesicles. Therefore, alternative mechanisms involving specialized membrane contact site (MCS) complexes (Scorrano et al., 2019; Tamura et al., 2019) and lipid transport proteins (LTPs) (Wong et al., 2019) have been proposed. Although there are many parallels, differences exist between yeast and mammalian mitochondrial phospholipid trafficking proteins (Fig. 3). Given that many excellent review articles have described mitochondrial phospholipid trafficking pathways in great detail (Acoba et al., 2020; Tamura et al., 2014), here, we mainly focus on our current state of knowledge.

Fig. 3.

Phospholipid transport to, from and within mitochondria. Left, phospholipid transport pathways in yeast. PA and PS made in the ER are transported to the OMM. The ER–mitochondria encounter structure (ERMES) complex has been implicated in PS transport. Vps39 is proposed to be involved in PE trafficking from the ER to mitochondria. The Ups1–Mdm35 and Ups2–Mdm35 complexes mediate the transport of PA and PS, respectively, from the OMM to the IMM. The IMS protein NDK1 has been implicated in CL transport from the IMM to OMM. Right, phospholipid transport pathways in mammals. PA and PS transport to the OMM from the ER is proposed to be mediated by PTPIP51–VAPB and MIGA2–VAPB complexes, respectively. The lipid transfer proteins ORP5 and ORP8 (ORP5/8) have also been shown to transport PS from the ER to OMM, and SAM50 and the MICOS complex have also been implicated in this process. PRELID–TRIAP complex proteins, the mammalian homologs of yeast Ups–Mdm35, mediate transport of PA and PS from the OMM to IMM. StarD7 protein has been implicated in PC transport from the ER to the OMM and IMM. PLS3 and NDPK-D have been shown to promote CL transport from the IMM to OMM. Question marks refer to unknown mechanisms of transport.

Fig. 3.

Phospholipid transport to, from and within mitochondria. Left, phospholipid transport pathways in yeast. PA and PS made in the ER are transported to the OMM. The ER–mitochondria encounter structure (ERMES) complex has been implicated in PS transport. Vps39 is proposed to be involved in PE trafficking from the ER to mitochondria. The Ups1–Mdm35 and Ups2–Mdm35 complexes mediate the transport of PA and PS, respectively, from the OMM to the IMM. The IMS protein NDK1 has been implicated in CL transport from the IMM to OMM. Right, phospholipid transport pathways in mammals. PA and PS transport to the OMM from the ER is proposed to be mediated by PTPIP51–VAPB and MIGA2–VAPB complexes, respectively. The lipid transfer proteins ORP5 and ORP8 (ORP5/8) have also been shown to transport PS from the ER to OMM, and SAM50 and the MICOS complex have also been implicated in this process. PRELID–TRIAP complex proteins, the mammalian homologs of yeast Ups–Mdm35, mediate transport of PA and PS from the OMM to IMM. StarD7 protein has been implicated in PC transport from the ER to the OMM and IMM. PLS3 and NDPK-D have been shown to promote CL transport from the IMM to OMM. Question marks refer to unknown mechanisms of transport.

Inter-organellar phospholipid transport from the ER to mitochondria

The ER is the major site of phospholipid biosynthesis in eukaryotes. Early microscopy and cell fractionation studies have shown that certain regions of ER membranes are in close association with mitochondria and these were named mitochondria-associated membranes (MAMs), which are important sites of lipid exchange between these organelles (Achleitner et al., 1999; Shiao et al., 1995). Once the molecular basis of MAMs was identified, they were commonly referred to as ER–mitochondrial membrane contact sites (ERMCS) (Wang et al., 2021). One of the first molecular tethers identified to hold these membranes together in yeast was the ER–mitochondrial encounter structure (ERMES) (Kornmann et al., 2009) (Fig. 3). Owing to the lipid-binding properties of subunits of ERMES, it was suggested to be an ideal candidate for lipid transport from the ER to mitochondria (AhYoung et al., 2015); indeed, several in vitro studies have supported the phospholipid transport activity of ERMES (Jeong et al., 2017; Kawano et al., 2018; Kojima et al., 2016). These studies have suggested a critical role of ERMES complex in PS transport from the ER to mitochondria. If true, loss of PS transport to mitochondria in ERMES mutants should prevent biosynthesis of mitochondrial PE via Psd1 (Fig. 2). However, PS to PE conversion is not abrogated in ERMES mutants and the phenotypes of ERMES mutants are not identical to yeast psd1Δ cells (Baker et al., 2016; Burgess et al., 1994; Nguyen et al., 2012; Tamura et al., 2012). To explain this conundrum, it was postulated that other proteins take over the function of ERMES in its absence (Lang et al., 2015). Indeed, multiple suppressors of ERMES phenotypes have been reported. For example, overexpression of mitochondrial proteins Mcp1 and Mcp2, vacuole fusion factor vacuolar protein sorting 39 (Vps39), or dominant mutations in an evolutionarily conserved LTP, Vps13, can rescue phenotypes of ERMES mutants (Honscher et al., 2014; Lang et al., 2015; Park et al., 2016; Tan et al., 2013). Importantly, combined loss of ERMES with Vps13 or Vps39 is synthetic lethal, suggesting that they have an overlapping function (Elbaz-Alon et al., 2014; Lang et al., 2015). More recently it has been shown in vivo that, ERMES could be involved in PC transport (John Peter et al., 2022). Thus, the in vivo role of ERMES is much more complex than originally thought (Kornmann, 2020).

More recently, molecular tethers that form ERMCS, analogous to the yeast ERMES complex, have been discovered in mammals (Fig. 3). Among the membrane-tethering protein complexes in mammals, PTPIP51, a mitochondrial protein, was shown to bind and transfer PA in vitro, and its deletion resulted in reduced mitochondrial CL levels in vivo (Yeo et al., 2021). The crystal structure of PTPIP51 revealed that its phospholipid-binding motif interacts with vesicle-associated membrane protein-associated protein B (VAPB), an ER membrane protein, to form a tether (Yeo et al., 2021). Recently, mitoguardin-2 (MIGA2), an OMM protein that forms an ERMCS in higher eukaryotes, was suggested to mediate lipid transport (Hong et al., 2022; Kim et al., 2022). Indeed, the crystal structure of zebrafish mitoguardin-2 (zMiga2; PDB ID: 7X15) revealed a hydrophobic cavity for lipid binding (Hong et al., 2022; Kim et al., 2022). The biochemical analysis of MIGA2 demonstrated that it can transfer various phospholipids with a ∼6–12 times preference for PS as compared to PC, PA, PE or ceramides (Kim et al., 2022).

Another mechanism of inter-organelle phospholipid transport is LTPs, which extract lipids from donor membrane and deliver them to acceptor membrane. The oxysterol receptor domain-containing proteins ORP5 and ORP8 are examples of LTPs (Maeda et al., 2013; Moser von Filseck et al., 2015) that are also localized at MAMs (Galmes et al., 2016) (Fig. 3). ORP5 and ORP8 cooperates with SAM50 (also known as SAMM50), a component of the mitochondrial intermembrane space bridging (MIB) complex, and Mic60 (also known as IMMT), a subunit of the mitochondrial cristae organizing structure (MICOS) complex, which anchors the IMM and OMM at the cristae junction and plays a role in the transport of PS from the ER to mitochondria (Monteiro-Cardoso et al., 2022). A direct comparison between Osh6, a yeast homolog of ORP5 and ORP8, and MIGA2 showed that MIGA2 largely contributes to PS transport at the ERMCS in mammalian cells (Kim et al., 2022). An evolutionarily conserved protein VPS13A was shown to localize at the MAMs and act as an LTP in transporting glycerophospholipids in vitro, though its specificity for a given phospholipid in vivo remains to be determined (Kumar et al., 2018). Transport of PC from the ER to the OMM and IMM via the STAR family protein StarD7 represents another example of LTP-mediated phospholipid transport (Horibata et al., 2020, 2017; Horibata and Sugimoto, 2010; Saita et al., 2018).

Recently, using a yeast genetic approach we have shown that Vps39, a subunit of vacuole mitochondria tethering complex (vCLAMP) and the homotypic fusion and protein sorting (HOPS) complex, is required to rescue PE-dependent mitochondrial functions in psd1Δ mutants (Iadarola et al., 2020, 2021). These findings implicate Vps39 in the transport of extramitochondrial PE to mitochondria (Fig. 3). Notably, vCLAMP and HOPS complexes have been previously shown to be involved in the transport of phospholipids and membrane fusion, respectively (Elbaz-Alon et al., 2014; Wurmser et al., 2000). However, the role of Vps39 in PE trafficking to mitochondria was independent of its previously described function as a part of the vCLAMP and HOPS complex (Elbaz-Alon et al., 2014; Honscher et al., 2014; Iadarola et al., 2020; Wurmser et al., 2000). It remains to be determined whether Vps39 acts as an LTP or indirectly regulates intracellular PE trafficking.

Despite this progress, we currently do not know how PI, PG and PE are transported between mitochondrial and ER membranes. Based on our current understanding of mitochondrial phospholipid trafficking, it is very likely that multiple mechanisms are at play in this process.

Intramitochondrial lipid transport

Phospholipids imported from the ER or biosynthesized on the OMM are transported to the IMM. The Ups (yeast) and PRELID (mammals) family of proteins play a crucial role in phospholipid transport across the IMS. Ups1 is an LTP that was shown to shuttle PA between mitochondrial membranes (Fig. 3) (Connerth et al., 2012; Potting et al., 2010). Loss of Ups1 leads to decreased CL and increased PA in mitochondria as expected (Connerth et al., 2012). During PA transport, Ups1 dynamically associates with Mdm35 and this interaction is evolutionarily conserved in human homologs of these proteins, PRELID1 and TRIAP1, which also assemble as a heterodimeric complex in the IMS (Connerth et al., 2012; Potting et al., 2013). The other members of the Ups/PRELID family, such as Ups2 and Ups3 in yeast, and PRELI2, SLMO1 and SLMO2 in mammals, have also been implicated in phospholipid transfer activities between the IMM and OMM, with the Ups2–Mdm35 complex (Aaltonen et al., 2016; Miyata et al., 2016) and its human homolog PRELID3b–TRIAP1 being involved in PS transport (Potting et al., 2010; Tamura et al., 2009).

Currently, we still do not understand the mechanism by which CL, PG, PI and PE are trafficked between the two mitochondrial membranes, possibly because we lack a robust in vivo technique to annotate specific phospholipids and link transport functions to certain molecular tethers or proteins. However, in the case of CL, a mitochondrial phospholipid scramblase (PLS3; also known as PLSCR3) and nucleoside diphosphate kinase D (NDPK-D; also known as NME4) have been suggested to promote transport of CL from the IMM to OMM in mammalian systems (Kagan et al., 2016; Liu et al., 2008).

Phospholipids can impact mitochondrial structure and function either through specific molecular interactions with membrane proteins or by modulating the bulk properties of membranes. Given that several comprehensive reviews are available on this topic (Acoba et al., 2020; Colina-Tenorio et al., 2020; Ji and Greenberg, 2022), here we focus on selected recent studies.

Mitochondrial energy metabolism

CL is essential for optimal mitochondrial bioenergetics (Liang et al., 2022) owing to its role in stabilizing IMM proteins (Musatov and Sedlak, 2017). One of the specialized functions of CL is to provide stability to the respiratory chain supercomplexes (RSCs) (Baker et al., 2016; Pfeiffer et al., 2003; Zhang et al., 2005). The relationship between CL and RSCs is reciprocal given that the increased function and expression of RSCs stimulates CL biosynthesis and remodeling (Gohil et al., 2004; Xu et al., 2019; Xu et al., 2021). CL has also been shown to be essential for the stability, assembly and activity of mitochondrial carrier proteins and ion channels. For example, CL is crucial for the conformation and the tertiary and quaternary assembly of ADP/ATP carrier (AAC2; also known as SLC25A5) protein (Senoo et al., 2020; Yi et al., 2022). Additionally, CL is essential for the assembly and activity of the mitochondrial Ca2+ uniporter (MCU) complex, which coordinates cellular energy demands with mitochondrial bioenergetics via Ca2+ signaling (Ghosh et al., 2020, 2022). Here, even a partial depletion of CL leads to reduced mitochondrial Ca2+ uptake, which disrupts the Ca2+-induced increase in mitochondrial respiration (Ghosh et al., 2020, 2022). Consistent with these genetic and bioenergetic studies, cryoEM structures of the MCU holo-complex have shown that MCU tetramers are stabilized by eight CL molecules (Zhuo et al., 2021). CL is also required for the activation of other mitochondrial proteins including pyruvate dehydrogenase (Li et al., 2019) and frataxin, a protein necessary for the biogenesis of mitochondrial iron-sulfur clusters (Li et al., 2020). Moreover, CL deficiency in a TAFAZZIN mutant HEK293 cell line caused an increased expression of an IMM protease, presenilin-associated rhomboid-like protein (PARL), which leads to defective mitochondrial quality control (Anzmann et al., 2021). Together, these studies have uncovered CL as a crucial regulator of the mitochondrial matrix, as well as IMM proteins.

PE is required for the activities of respiratory complexes III and IV in yeast and complexes I and IV in mammals (Baker et al., 2016; Tasseva et al., 2013). In mammals, exercise and exposure to cold temperature results in increased mitochondrial PE and CL levels, with elevated mitochondrial PE deemed sufficient to increase oxidative phosphorylation capacity without an increase in abundance of the respiratory chain enzymes (Heden et al., 2019; Johnson et al., 2023). Genetic ablation of mitochondrial PE biosynthesis lowered UCP1-dependent respiration in mice (Johnson et al., 2023). Similarly, CL biosynthesis is induced in brown and beige fat upon cold exposure of mice, and loss of CL biosynthetic enzymes in these tissues diminishes mitochondrial uncoupling and thermogenesis (Sustarsic et al., 2018). These data reinforce findings from the yeast system that first identified the specific requirement of PE and CL for mitochondrial bioenergetics (Baker et al., 2016).

Mitochondrial dynamics

The morphology of mitochondria in cells is dynamic; mitochondria can exist in a tubular network or a more fragmented state, which is mediated by two opposing processes – fusion and fission (Shaw and Nunnari, 2002). Two non-bilayer phospholipids, PA and CL, play a crucial role in the maintenance of mitochondrial dynamics by regulating the fusion and fission machinery (Kameoka et al., 2018). For example, PA induces fusion of the OMM via two dynamin-related GTPases, mitofusin 1 and 2 (Choi et al., 2006), and at the same time inhibits fission by binding to Drp1 (also known as DNM1L), the fission-inducing GTPase (Adachi et al., 2016). CL mediates IMM fusion through direct interaction with the dynamin-related GTPase Opa1 or its yeast homolog Mgm1 (Ban et al., 2017; Yan et al., 2020). PE has also been shown to promote mitochondrial fusion by regulating topogenesis of Mgm1 and, in this regard, has overlapping function with CL (Chan and McQuibban, 2012; Joshi et al., 2012). Recently, nuclear magnetic resonance-based studies have uncovered CL-binding motifs (CBMs) on the variable domain of Drp1 (Mahajan et al., 2021). The electrostatic association of the negatively charged head group of CL on the OMM with amino acid residues in one CBM, along with hydrophobic interactions of acyl chains of CL with the other CBM of Drp1, leads to structural rearrangements that promote membrane constriction and thus mitochondrial membrane fission (Mahajan et al., 2021).

Mitophagy

Mitophagy is a type of autophagy where the cell selectively degrades damaged mitochondria (Killackey et al., 2020). Mitochondrial damage triggers the externalization of CL to the OMM, which recruits the proteins of the LC3 autophagy family to initiate mitophagy (Chu et al., 2013). Variability in the N-terminal region of the LC3 protein subfamily determines its specificity for CL, where LC3A (also known as MAP1LC3A) has high affinity and specificity for CL and participates in CL-mediated mitophagy (Iriondo et al., 2022). Interestingly, another member of the LC3 family, LC3C (MAP1LC3C), has the highest affinity for CL but does not participate in CL-mediated-mitophagy (Iriondo et al., 2022). Instead, it has been suggested that binding of LC3C to PA present on the OMM helps to maintain the integrity of the mitochondrial network under basal growth conditions by selective degradation of mitochondrial proteins (Iriondo et al., 2022; Le Guerroue et al., 2017).

Mitochondrial protein import machinery

Mitochondria import nearly 1000 proteins via dedicated protein import machineries such as the translocase of the outer membrane (TOM) complex, translocase of the inner membrane (TIM) complex and the sorting and assembly machinery (SAM) present on the OMM (Busch et al., 2023). Early studies uncovered the specific requirement for phospholipids in the stability and function of mitochondrial protein import machineries. For example, CL is required for the stability of TOM and SAM complexes (Gebert et al., 2009), PE is required for the import of β-barrel proteins through the TOM complex (Becker et al., 2013) and PC is required for the stability and activity of the TIM23 complex (Schuler et al., 2016). Molecular insights on the specific role of phospholipids in mitochondrial protein import are emerging from recent cryoEM-based structural studies. For example, the structure of yeast and human TOM complexes show that the protein-conducting channel contains a phospholipid molecule (Araiso et al., 2019), which was shown to be PC (Wang et al., 2020). Through structural and biophysical analysis, it was shown that the soluble domain of Tim50 (also known as TIMM50), a subunit of TIM23 complex, interacts with the IMS domain of another subunit, Tim23 (TIMM23), in a CL-dependent manner (Malhotra et al., 2017).

The overwhelming majority of studies to date have described the functional roles of PC, PE and CL, the three most abundant mitochondrial membrane phospholipids, but the roles of less abundant phospholipids, such as PI and PS, remain understudied. Although recent studies have shown a requirement of PS for mitochondrial protein import and integrity (Park et al., 2021; Yang et al., 2019), future studies on less abundant phospholipids are necessary to reveal their specific role(s) in mitochondrial biology.

Owing to the crucial role of phospholipids in various mitochondrial processes, it is of no surprise that disruptions in their biosynthesis and remodeling lead to disorders with a wide array of clinical pathologies. This section of the Review will describe the genetics, clinical presentations and biochemical underpinnings of rare genetic disorders of mitochondrial phospholipid metabolism (Table 2).

Table 2.

Human genetic disorders of mitochondrial phospholipid metabolism

Human genetic disorders of mitochondrial phospholipid metabolism
Human genetic disorders of mitochondrial phospholipid metabolism

Barth syndrome (BTHS)

BTHS was first described in 1983 by Peter Barth as an X-linked disease characterized by neutropenia, cardiomyopathy, skeletal myopathy and a high rate of infant mortality (Barth et al., 1983). The causal gene for BTHS, TAFAZZIN, was identified in 1996 (Bione et al., 1996). A recent study has estimated the prevalence of BTHS at one in a million in the male population (Miller et al., 2020). With proper management of this disorder, affected individuals have an expected lifespan of ∼40 years (Rigaud et al., 2013). Owing to variations in clinical presentations, diagnosis based solely on the classical symptoms can be highly unreliable. Recently, an ultra-high performance liquid chromatography-mass spectrometry-based diagnostic method that measures the elevated ratio of MLCL:CL in blood samples from BTHS individuals has been developed and is considerably more reliable for diagnostic purposes (Vaz et al., 2022).

At the cellular and biochemical level, BTHS mitochondria contain perturbed CL species, with an overall decrease in CL levels and an increase in MLCL levels, which results in defective mitophagy, disorganized and disarrayed cristae, ‘leaky’ IMMs with reduced membrane potential, destabilized RSCs, increased oxidative stress and lower production of ATP (Ghosh et al., 2019; Lou et al., 2018; Saric et al., 2016). Furthermore, it has recently been shown that the MCU complex is destabilized in BTHS models and cardiac tissue from BTHS individuals (Bertero et al., 2021; Ghosh et al., 2020, 2022). Together, these bioenergetic defects explain cardio-skeletal myopathies; however, the biochemical basis of neutropenia, another characteristic feature of BTHS pathology, has not yet been elucidated. Although there is no existing treatment for this disorder, cardiac arrhythmia, heart failure and neutropenia are managed pharmacologically (Zegallai and Hatch, 2021). We highlight potential therapies for BTHS in Box 1.

Box 1. Therapeutic approaches for Barth syndrome

Several therapeutic approaches for BTHS that target different disease aspects are at the developmental stage or in early clinical trials (Zegallai and Hatch, 2021). The most exciting candidate to emerge so far is the CL-stabilizing compound elamipretide (also known as SS-31 peptide), which underwent a clinical trial with BTHS patients following promising preclinical studies with various animal models exhibiting mitochondrial dysfunction (Szeto, 2014). In a two-part clinical trial involving 12 individuals with BTHS, continued use of elamipretide for a total of 48 weeks correlated with significant improvements in skeletal muscle performance and cardiac stroke volumes. Given these findings, it was concluded that elamipretide might have a beneficial role in the ongoing care of individuals with BTHS (Reid Thompson et al., 2021). Adeno-associated virus (AAV)-mediated gene therapy has also been employed, and has led to improvements in mitochondrial structure, muscle strength and cardiac function in a mouse model of BTHS, providing strong support for the use of this strategy in a clinical setting (Suzuki-Hatano et al., 2019). Another method developed involves use of CL nanodisks, water-soluble nanoscale particles intended to mediate delivery of exogenous CL to mitochondria. Although this has shown some success in vitro (Ikon et al., 2015), it was found to be ineffective in a BTHS mouse model, and was deemed not suitable for patient treatment (Ikon et al., 2018). A 30-week clinical trial with bezafibrate, which targets the PGC-1α pathway to stimulate mitochondrial biogenesis, was conducted in 11 BTHS patients (Dabner et al., 2021). Unfortunately, this trial did not show significant improvement in quality of life and failed to meet its primary outcome of improvement in peak body oxygen uptake (https://www.barthsyndrome.org/research/clinicaltrials/cardioman.html 14/04/2023). Preclinical studies with resveratrol, which similarly targets the PGC-1α pathway, showed improvement in mitochondrial and cardiac function in a BTHS mouse model (Cole et al., 2020). Similarly, stimulating mitophagy via rapamycin ameliorated disease phenotypes in a BTHS mouse model, offering another potential therapeutic option (Zhang et al., 2022).

Sengers syndrome

Sengers syndrome is an autosomal recessive disorder originally described in 1975, but not recognized as a disorder of phospholipid metabolism until 2012 (Mayr et al., 2012; Sengers et al., 1975). Fewer than 1000 people in the USA have this disease (https://rarediseases.info.nih.gov/diseases/1142/sengers-syndrome; accessed 14/04/2023), which can present in either a severe or mild form. The severe form of this disorder results in infant mortality due to the early onset of cardiomyopathy, whereas individuals suffering from a milder form can survive through the fourth decade of life (Wortmann et al., 2015). The neonatal form of this disorder was also described as mitochondrial encephalomyopathy because of the involvement of the central nervous system (Perry and Sladky, 2008).

This disorder is caused by the loss of function of AGK, which catalyzes the phosphorylation of diacylglycerol and monoacylglycerol to form PA and lysophosphatidic acid, respectively (Mayr et al., 2012). Since PA is a precursor of CL (Fig. 2), loss of AGK function could perturb the biosynthesis of CL and contribute to disease pathology, including cardiomyopathy and skeletal myopathy, among other complex symptoms (Table 2). Perturbation in CL biosynthesis could also explain complex I, III and IV deficiencies and severe mtDNA depletion, which has been reported in two unrelated individuals with AGK mutations (Calvo et al., 2012). However, the extent to which CL biosynthesis relies on AGK-derived PA is unknown. AGK has also been identified as a constituent of the TIM22 protein import complex, which facilitates the import of mitochondrial carrier proteins such as ATP:ADP carrier (Vukotic et al., 2017). It has been suggested that destabilization of the TIM22 complex could also contribute to the pathology of Sengers syndrome (Vukotic et al., 2017). Indeed, cardiac and skeletal muscle of Sengers syndrome individuals exhibit strikingly reduced levels of ATP:ADP carrier protein in the IMM (Haghighi et al., 2014; Mayr et al., 2012). Currently, no specific treatment is available for this fatal disorder.

MEGDEL syndrome

3-Methylglutaconic aciduria, dystonia–deafness, encephalopathy, Leigh-like (MEGDEL) syndrome is an autosomal neurodegenerative disorder that was first described in 2006 (Wortmann et al., 2006). The age of onset can be early (infantile) or delayed (juvenile), with varying degrees of severity (Table 2) (Finsterer et al., 2020). The genetic basis of this disorder was first described in 2012 with biallelic variants in the SERAC1 gene (Wortmann et al., 2012). Since its initial description in 2006, 102 cases have been reported worldwide (Finsterer et al., 2020), and it is estimated that 27 individuals will be born with MEGDEL syndrome each year (Maas et al., 2017).

The precise biochemical function of SERAC1 is not yet known; however, this protein has been reported to be essential for PG remodeling, such that loss of SERAC1 function leads to the accumulation of 34:1 PG instead of 36:1, which results in an altered CL composition (Wortmann et al., 2012). A nonsense mutation in SERAC1 was shown to result in impaired mitochondrial liver function with a decreased level of respiratory complexes I, III and IV (Fellman et al., 2022). Consistent with this, reduced activity of the respiratory chain complexes has been observed in liver biopsies of other MEGDEL syndrome individuals (Sarig et al., 2013). Further research is necessary to unravel the precise connection between the biochemical basis of the disease and its pathology. Currently, treatment for MEGDEL syndrome is mostly palliative, and an early death typically follows brain degeneration (Maas et al., 2017).

Liberfarb syndrome

This rare genetic disorder was first reported clinically in 1986 (Liberfarb et al., 1986), but the underlying molecular cause was not described until 2019 (Peter et al., 2019). It is an autosomal recessive disorder of unknown prevalence caused by a partial loss of function of mitochondrial PISD (Peter et al., 2019), which is required for conversion of PS into PE in mitochondria. The small number of Liberfarb syndrome patients that are positively diagnosed show a wide spectrum of clinical presentations (Table 2) (Peter et al., 2019; Zhao et al., 2019).

The cellular and biochemical phenotypes of PISD mutations include fragmentation of the mitochondrial network, reduced oxygen consumption and impaired activity of mitochondrial proteases. Restoration of these phenotypes can be achieved by lyso-PE or ethanolamine supplementation in fibroblasts from affected individuals, consistent with the notion that the aforementioned phenotypes are a result of reduced mitochondrial PE (Girisha et al., 2019; Zhao et al., 2019). These findings also provide potential treatment options for this disease.

Combined oxidative phosphorylation deficiency 57

The most recently identified disorder of mitochondrial phospholipid metabolism is caused by homozygous recessive mutations in CRLS1 gene, which encodes CL synthase (Lee et al., 2022). These mutations have been detected in four individuals from three different families (Lee et al., 2022). These individuals have compromised CL biosynthesis, but exhibit distinct symptoms as compared to the other disorders of CL deficiency discussed here (Table 2). Investigation of fibroblasts derived from affected individuals identified impaired mitochondrial morphology and biogenesis, with reduced CL levels and increased levels of PG, which is a substrate for CL (Lee et al., 2022).

Owing to the different biophysical and biochemical properties of mitochondrial membrane phospholipids, each class of phospholipid plays a unique role in mitochondrial biogenesis, bioenergetics and dynamics. Thus, maintaining phospholipid homeostasis is crucial, and in this regard, we anticipate the discovery of novel proteins for the transport of PI, PG and PE to, from and within mitochondria. In addition to the requirements of the absolute levels of non-bilayer forming phospholipids CL and PE, their enrichment in membrane microdomains by scaffolding factors, such as prohibitins and stomatin-like protein-2, are likely to impact specific mitochondrial functions (Christie et al., 2011; Tatsuta and Langer, 2017). Determining the functions of mitochondrial phospholipids is of high biomedical significance because advances in human genomics have identified rare but debilitating genetic disorders that occur due to defects in phospholipid metabolism (Lu and Claypool, 2015). Currently, the major challenge in understanding the biochemical basis of rare genetic disorders of mitochondrial phospholipid metabolism is the lack of correlation between genotype and phenotype (Ronvelia et al., 2012). This could be due to the presence of modifier genes in the genome, as has been recently shown in a TAFAZZIN-knockout mouse model (Wang et al., 2023). Identifying these modifier gene(s) could pave the way to therapeutic approaches for these orphan disorders.

We thank Dr Benoit Kornmann for clarifying the function of ERMES and MAM in his personal communications to the authors.

Funding

This work was supported by the Welch Foundation Grant (A-1810 to V.M.G.), the X-grant from Texas A&M University (to V.M.G.) and the National Institute of General Medical Sciences (National Institutes of Health) awards (R01GM143630 and R01GM111672 to V.M.G.). T.H.R. is a Beckman scholar supported by the Beckman Foundation. Deposited in PMC for release after 12 months.

Aaltonen
,
M. J.
,
Friedman
,
J. R.
,
Osman
,
C.
,
Salin
,
B.
,
di Rago
,
J. P.
,
Nunnari
,
J.
,
Langer
,
T.
and
Tatsuta
,
T.
(
2016
).
MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria
.
J. Cell. Biol.
213
,
525
-
534
.
Achleitner
,
G.
,
Gaigg
,
B.
,
Krasser
,
A.
,
Kainersdorfer
,
E.
,
Kohlwein
,
S. D.
,
Perktold
,
A.
,
Zellnig
,
G.
and
Daum
,
G.
(
1999
).
Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact
.
Eur. J. Biochem.
264
,
545
-
553
.
Acoba
,
M. G.
,
Senoo
,
N.
and
Claypool
,
S. M.
(
2020
).
Phospholipid ebb and flow makes mitochondria go
.
J. Cell Biol.
219
,
e202003131
.
Adachi
,
Y.
,
Itoh
,
K.
,
Yamada
,
T.
,
Cerveny
,
K. L.
,
Suzuki
,
T. L.
,
Macdonald
,
P.
,
Frohman
,
M. A.
,
Ramachandran
,
R.
,
Iijima
,
M.
and
Sesaki
,
H.
(
2016
).
Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division
.
Mol. Cell
63
,
1034
-
1043
.
AhYoung
,
A. P.
,
Jiang
,
J.
,
Zhang
,
J.
,
Khoi Dang
,
X.
,
Loo
,
J. A.
,
Zhou
,
Z. H.
and
Egea
,
P. F.
(
2015
).
Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly
.
Proc. Natl. Acad. Sci. USA
112
,
E3179
-
E3188
.
Anzmann
,
A. F.
,
Sniezek
,
O. L.
,
Pado
,
A.
,
Busa
,
V.
,
Vaz
,
F. M.
,
Kreimer
,
S. D.
,
DeVine
,
L. R.
,
Cole
,
R. N.
,
Le
,
A.
,
Kirsch
,
B. J.
et al. 
(
2021
).
Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules
.
J. Biol. Chem.
297
,
101005
.
Araiso
,
Y.
,
Tsutsumi
,
A.
,
Qiu
,
J.
,
Imai
,
K.
,
Shiota
,
T.
,
Song
,
J.
,
Lindau
,
C.
,
Wenz
,
L. S.
,
Sakaue
,
H.
,
Yunoki
,
K.
et al. 
(
2019
).
Structure of the mitochondrial import gate reveals distinct preprotein paths
.
Nature
575
,
395
-
401
.
Athenstaedt
,
K.
,
Weys
,
S.
,
Paltauf
,
F.
and
Daum
,
G.
(
1999
).
Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae
.
J. Bacteriol.
181
,
1458
-
1463
.
Baker
,
C. D.
,
Basu Ball
,
W.
,
Pryce
,
E. N.
and
Gohil
,
V. M.
(
2016
).
Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation
.
Mol. Biol. Cell
27
,
2161
-
2171
.
Ban
,
T.
,
Ishihara
,
T.
,
Kohno
,
H.
,
Saita
,
S.
,
Ichimura
,
A.
,
Maenaka
,
K.
,
Oka
,
T.
,
Mihara
,
K.
and
Ishihara
,
N.
(
2017
).
Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin
.
Nat. Cell Biol.
19
,
856
-
863
.
Barth
,
P. G.
,
Scholte
,
H. R.
,
Berden
,
J. A.
,
Van der Klei-Van Moorsel
,
J. M.
,
Luyt-Houwen
,
I. E.
,
Van ‘t Veer-Korthof
,
E. T.
,
Van der Harten
,
J. J.
and
Sobotka-Plojhar
,
M. A.
(
1983
).
An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes
.
J. Neurol. Sci.
62
,
327
-
355
.
Basu Ball
,
W.
,
Neff
,
J. K.
and
Gohil
,
V. M.
(
2018
).
The role of nonbilayer phospholipids in mitochondrial structure and function
.
FEBS Lett.
592
,
1273
-
1290
.
Becker
,
T.
,
Horvath
,
S. E.
,
Bottinger
,
L.
,
Gebert
,
N.
,
Daum
,
G.
and
Pfanner
,
N.
(
2013
).
Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins
.
J. Biol. Chem.
288
,
16451
-
16459
.
Bektas
,
M.
,
Payne
,
S. G.
,
Liu
,
H.
,
Goparaju
,
S.
,
Milstien
,
S.
and
Spiegel
,
S.
(
2005
).
A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells
.
J. Cell Biol.
169
,
801
-
811
.
Beltran-Heredia
,
E.
,
Tsai
,
F. C.
,
Salinas-Almaguer
,
S.
,
Cao
,
F. J.
,
Bassereau
,
P.
and
Monroy
,
F.
(
2019
).
Membrane curvature induces cardiolipin sorting
.
Commun. Biol.
2
,
225
.
Beranek
,
A.
,
Rechberger
,
G.
,
Knauer
,
H.
,
Wolinski
,
H.
,
Kohlwein
,
S. D.
and
Leber
,
R.
(
2009
).
Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast
.
J. Biol. Chem.
284
,
11572
-
11578
.
Bertero
,
E.
,
Nickel
,
A.
,
Kohlhaas
,
M.
,
Hohl
,
M.
,
Sequeira
,
V.
,
Brune
,
C.
,
Schwemmlein
,
J.
,
Abesser
,
M.
,
Schuh
,
K.
,
Kutschka
,
I.
et al. 
(
2021
).
Loss of mitochondrial Ca(2+) uniporter limits inotropic reserve and provides trigger and substrate for arrhythmias in barth syndrome cardiomyopathy
.
Circulation
144
,
1694
-
1713
.
Bione
,
S.
,
D'Adamo
,
P.
,
Maestrini
,
E.
,
Gedeon
,
A. K.
,
Bolhuis
,
P. A.
and
Toniolo
,
D.
(
1996
).
A novel X-linked gene, G4.5. is responsible for Barth syndrome
.
Nat. Genet.
12
,
385
-
389
.
Blunsom
,
N. J.
,
Gomez-Espinosa
,
E.
,
Ashlin
,
T. G.
and
Cockcroft
,
S.
(
2018
).
Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1
.
Biochim. Biophys. Acta Mol. Cell. Biol. Lipids
1863
,
284
-
298
.
Boyd
,
K. J.
,
Alder
,
N. N.
and
May
,
E. R.
(
2017
).
Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers
.
Langmuir
33
,
6937
-
6946
.
Bradley
,
R. M.
,
Marvyn
,
P. M.
,
Aristizabal Henao
,
J. J.
,
Mardian
,
E. B.
,
George
,
S.
,
Aucoin
,
M. G.
,
Stark
,
K. D.
and
Duncan
,
R. E.
(
2015
).
Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels
.
Biochim. Biophys. Acta
1851
,
1566
-
1576
.
Budin
,
I.
,
de Rond
,
T.
,
Chen
,
Y.
,
Chan
,
L. J. G.
,
Petzold
,
C. J.
and
Keasling
,
J. D.
(
2018
).
Viscous control of cellular respiration by membrane lipid composition
.
Science
362
,
1186
-
1189
.
Burgess
,
S. M.
,
Delannoy
,
M.
and
Jensen
,
R. E.
(
1994
).
MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria
.
J. Cell Biol.
126
,
1375
-
1391
.
Busch
,
J. D.
,
Fielden
,
L. F.
,
Pfanner
,
N.
and
Wiedemann
,
N.
(
2023
).
Mitochondrial protein transport: Versatility of translocases and mechanisms
.
Mol. Cell
83
,
890
-
910
.
Calvo
,
S. E.
,
Compton
,
A. G.
,
Hershman
,
S. G.
,
Lim
,
S. C.
,
Lieber
,
D. S.
,
Tucker
,
E. J.
,
Laskowski
,
A.
,
Garone
,
C.
,
Liu
,
S.
,
Jaffe
,
D. B.
et al. 
(
2012
).
Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing
.
Sci. Transl. Med.
4
,
118ra10
.
Calzada
,
E.
,
Avery
,
E.
,
Sam
,
P. N.
,
Modak
,
A.
,
Wang
,
C.
,
McCaffery
,
J. M.
,
Han
,
X.
,
Alder
,
N. N.
and
Claypool
,
S. M.
(
2019
).
Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc(1) complex function
.
Nat. Commun.
10
,
1432
.
Cao
,
S. G.
and
Hatch
,
G. M.
(
1994
).
Stimulation of phosphatidylglycerolphosphate phosphatase activity by unsaturated fatty acids in rat heart
.
Lipids
29
,
475
-
480
.
Cao
,
J.
,
Liu
,
Y.
,
Lockwood
,
J.
,
Burn
,
P.
and
Shi
,
Y.
(
2004
).
A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse
.
J. Biol. Chem.
279
,
31727
-
31734
.
Chan
,
E. Y.
and
McQuibban
,
G. A.
(
2012
).
Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1)
.
J. Biol. Chem.
287
,
40131
-
40139
.
Chang
,
S. C.
,
Heacock
,
P. N.
,
Clancey
,
C. J.
and
Dowhan
,
W.
(
1998
).
The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae
.
J. Biol. Chem.
273
,
9829
-
9836
.
Choi
,
S. Y.
,
Huang
,
P.
,
Jenkins
,
G. M.
,
Chan
,
D. C.
,
Schiller
,
J.
and
Frohman
,
M. A.
(
2006
).
A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis
.
Nat. Cell Biol.
8
,
1255
-
1262
.
Christie
,
D. A.
,
Lemke
,
C. D.
,
Elias
,
I. M.
,
Chau
,
L. A.
,
Kirchhof
,
M. G.
,
Li
,
B.
,
Ball
,
E. H.
,
Dunn
,
S. D.
,
Hatch
,
G. M.
and
Madrenas
,
J.
(
2011
).
Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function
.
Mol. Cell. Biol.
31
,
3845
-
3856
.
Chu
,
C. T.
,
Ji
,
J.
,
Dagda
,
R. K.
,
Jiang
,
J. F.
,
Tyurina
,
Y. Y.
,
Kapralov
,
A. A.
,
Tyurin
,
V. A.
,
Yanamala
,
N.
,
Shrivastava
,
I. H.
,
Mohammadyani
,
D.
et al. 
(
2013
).
Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
.
Nat. Cell Biol.
15
,
1197
-
1205
.
Cogliati
,
S.
,
Frezza
,
C.
,
Soriano
,
M. E.
,
Varanita
,
T.
,
Quintana-Cabrera
,
R.
,
Corrado
,
M.
,
Cipolat
,
S.
,
Costa
,
V.
,
Casarin
,
A.
,
Gomes
,
L. C.
et al. 
(
2013
).
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
.
Cell
155
,
160
-
171
.
Cole
,
L. K.
,
Mejia
,
E. M.
,
Sparagna
,
G. C.
,
Vandel
,
M.
,
Xiang
,
B.
,
Han
,
X.
,
Dedousis
,
N.
,
Kaufman
,
B. A.
,
Dolinsky
,
V. W.
and
Hatch
,
G. M.
(
2020
).
Cardiolipin deficiency elevates susceptibility to a lipotoxic hypertrophic cardiomyopathy
.
J. Mol. Cell. Cardiol.
144
,
24
-
34
.
Colina-Tenorio
,
L.
,
Horten
,
P.
,
Pfanner
,
N.
and
Rampelt
,
H.
(
2020
).
Shaping the mitochondrial inner membrane in health and disease
.
J. Intern. Med.
287
,
645
-
664
.
Connerth
,
M.
,
Tatsuta
,
T.
,
Haag
,
M.
,
Klecker
,
T.
,
Westermann
,
B.
and
Langer
,
T.
(
2012
).
Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
.
Science
338
,
815
-
818
.
Dabner
,
L.
,
Pieles
,
G. E.
,
Steward
,
C. G.
,
Hamilton-Shield
,
J. P.
,
Ness
,
A. R.
,
Rogers
,
C. A.
,
Bucciarelli-Ducci
,
C.
,
Greenwood
,
R.
,
Ellis
,
L.
,
Sheehan
,
K.
et al. 
(
2021
).
Treatment of barth syndrome by cardiolipin manipulation (CARDIOMAN) with Bezafibrate: protocol for a randomized placebo-controlled pilot trial conducted in the nationally commissioned barth syndrome service
.
JMIR Res. Protoc.
10
,
e22533
.
Daum
,
G.
(
1985
).
Lipids of mitochondria
.
Biochim. Biophys. Acta
822
,
1
-
42
.
de Kroon
,
A. I.
,
Dolis
,
D.
,
Mayer
,
A.
,
Lill
,
R.
and
de Kruijff
,
B.
(
1997
).
Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane?
Biochim. Biophys. Acta
1325
,
108
-
116
.
Elbaz-Alon
,
Y.
,
Rosenfeld-Gur
,
E.
,
Shinder
,
V.
,
Futerman
,
A. H.
,
Geiger
,
T.
and
Schuldiner
,
M.
(
2014
).
A dynamic interface between vacuoles and mitochondria in yeast
.
Dev. Cell
30
,
95
-
102
.
Fellman
,
V.
,
Banerjee
,
R.
,
Lin
,
K. L.
,
Pulli
,
I.
,
Cooper
,
H.
,
Tyynismaa
,
H.
and
Kallijarvi
,
J.
(
2022
).
Severe neonatal MEGDHEL syndrome with a homozygous truncating mutation in SERAC1
.
Biochim. Biophys. Acta Mol. Basis Dis.
1868
,
166298
.
Finsterer
,
J.
,
Scorza
,
F. A.
,
Fiorini
,
A. C.
and
Scorza
,
C. A.
(
2020
).
MEGDEL syndrome
.
Pediatr. Neurol.
110
,
25
-
29
.
Friedman
,
J. R.
,
Kannan
,
M.
,
Toulmay
,
A.
,
Jan
,
C. H.
,
Weissman
,
J. S.
,
Prinz
,
W. A.
and
Nunnari
,
J.
(
2018
).
Lipid homeostasis is maintained by dual targeting of the mitochondrial PE biosynthesis enzyme to the ER
.
Dev. Cell
44
,
261
-
270.e6
.
Galmes
,
R.
,
Houcine
,
A.
,
van Vliet
,
A. R.
,
Agostinis
,
P.
,
Jackson
,
C. L.
and
Giordano
,
F.
(
2016
).
ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function
.
EMBO Rep.
17
,
800
-
810
.
Gebert
,
N.
,
Joshi
,
A. S.
,
Kutik
,
S.
,
Becker
,
T.
,
McKenzie
,
M.
,
Guan
,
X. L.
,
Mooga
,
V. P.
,
Stroud
,
D. A.
,
Kulkarni
,
G.
,
Wenk
,
M. R.
et al. 
(
2009
).
Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome
.
Curr. Biol.
19
,
2133
-
2139
.
Ghosh
,
S.
,
Basu Ball
,
W.
,
Madaris
,
T. R.
,
Srikantan
,
S.
,
Madesh
,
M.
,
Mootha
,
V. K.
and
Gohil
,
V. M.
(
2020
).
An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter
.
Proc. Natl. Acad. Sci. USA
117
,
16383
-
16390
.
Ghosh
,
S.
,
Iadarola
,
D. M.
,
Ball
,
W. B.
and
Gohil
,
V. M.
(
2019
).
Mitochondrial dysfunctions in barth syndrome
.
IUBMB Life
71
,
791
-
801
.
Ghosh
,
S.
,
Zulkifli
,
M.
,
Joshi
,
A.
,
Venkatesan
,
M.
,
Cristel
,
A.
,
Vishnu
,
N.
,
Madesh
,
M.
and
Gohil
,
V. M.
(
2022
).
MCU-complex-mediated mitochondrial calcium signaling is impaired in Barth syndrome
.
Hum. Mol. Genet.
31
,
376
-
385
.
Girisha
,
K. M.
,
von Elsner
,
L.
,
Neethukrishna
,
K.
,
Muranjan
,
M.
,
Shukla
,
A.
,
Bhavani
,
G. S.
,
Nishimura
,
G.
,
Kutsche
,
K.
and
Mortier
,
G.
(
2019
).
The homozygous variant c.797G>A/p.(Cys266Tyr) in PISD is associated with a Spondyloepimetaphyseal dysplasia with large epiphyses and disturbed mitochondrial function
.
Hum. Mutat.
40
,
299
-
309
.
Gohil
,
V. M.
,
Hayes
,
P.
,
Matsuyama
,
S.
,
Schagger
,
H.
,
Schlame
,
M.
and
Greenberg
,
M. L.
(
2004
).
Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent
.
J. Biol. Chem.
279
,
42612
-
42618
.
Haghighi
,
A.
,
Haack
,
T. B.
,
Atiq
,
M.
,
Mottaghi
,
H.
,
Haghighi-Kakhki
,
H.
,
Bashir
,
R. A.
,
Ahting
,
U.
,
Feichtinger
,
R. G.
,
Mayr
,
J. A.
,
Rotig
,
A.
et al. 
(
2014
).
Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients
.
Orphanet J. Rare Dis.
9
,
119
.
Heden
,
T. D.
,
Johnson
,
J. M.
,
Ferrara
,
P. J.
,
Eshima
,
H.
,
Verkerke
,
A. R. P.
,
Wentzler
,
E. J.
,
Siripoksup
,
P.
,
Narowski
,
T. M.
,
Coleman
,
C. B.
,
Lin
,
C. T.
et al. 
(
2019
).
Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity
.
Sci. Adv.
5
,
eaax8352
.
Holthuis
,
J. C.
and
Menon
,
A. K.
(
2014
).
Lipid landscapes and pipelines in membrane homeostasis
.
Nature
510
,
48
-
57
.
Hong
,
Z.
,
Adlakha
,
J.
,
Wan
,
N.
,
Guinn
,
E.
,
Giska
,
F.
,
Gupta
,
K.
,
Melia
,
T. J.
and
Reinisch
,
K. M.
(
2022
).
Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation
.
J. Cell Biol.
221
,
e202207022
.
Honscher
,
C.
,
Mari
,
M.
,
Auffarth
,
K.
,
Bohnert
,
M.
,
Griffith
,
J.
,
Geerts
,
W.
,
van der Laan
,
M.
,
Cabrera
,
M.
,
Reggiori
,
F.
and
Ungermann
,
C.
(
2014
).
Cellular metabolism regulates contact sites between vacuoles and mitochondria
.
Dev. Cell
30
,
86
-
94
.
Horibata
,
Y.
and
Sugimoto
,
H.
(
2010
).
StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria
.
J. Biol. Chem.
285
,
7358
-
7365
.
Horibata
,
Y.
,
Ando
,
H.
,
Satou
,
M.
,
Shimizu
,
H.
,
Mitsuhashi
,
S.
,
Shimizu
,
Y.
,
Itoh
,
M.
and
Sugimoto
,
H.
(
2017
).
Identification of the N-terminal transmembrane domain of StarD7 and its importance for mitochondrial outer membrane localization and phosphatidylcholine transfer
.
Sci. Rep.
7
,
8793
.
Horibata
,
Y.
,
Mitsuhashi
,
S.
,
Shimizu
,
H.
,
Maejima
,
S.
,
Sakamoto
,
H.
,
Aoyama
,
C.
,
Ando
,
H.
and
Sugimoto
,
H.
(
2020
).
The phosphatidylcholine transfer protein StarD7 is important for myogenic differentiation in mouse myoblast C2C12 cells and human primary skeletal myoblasts
.
Sci. Rep.
10
,
2845
.
Horvath
,
S. E.
and
Daum
,
G.
(
2013
).
Lipids of mitochondria
.
Prog. Lipid Res.
52
,
590
-
614
.
Houtkooper
,
R. H.
,
Akbari
,
H.
,
van Lenthe
,
H.
,
Kulik
,
W.
,
Wanders
,
R. J.
,
Frentzen
,
M.
and
Vaz
,
F. M.
(
2006
).
Identification and characterization of human cardiolipin synthase
.
FEBS Lett.
580
,
3059
-
3064
.
Hovius
,
R.
,
Faber
,
B.
,
Brigot
,
B.
,
Nicolay
,
K.
and
de Kruijff
,
B.
(
1992
).
On the mechanism of the mitochondrial decarboxylation of phosphatidylserine
.
J. Biol. Chem.
267
,
16790
-
16795
.
Iadarola
,
D. M.
,
Basu Ball
,
W.
,
Trivedi
,
P. P.
,
Fu
,
G.
,
Nan
,
B.
and
Gohil
,
V. M.
(
2020
).
Vps39 is required for ethanolamine-stimulated elevation in mitochondrial phosphatidylethanolamine
.
Biochim. Biophys. Acta Mol. Cell Biol. Lipids
1865
,
158655
.
Iadarola
,
D. M.
,
Joshi
,
A.
,
Caldwell
,
C. B.
and
Gohil
,
V. M.
(
2021
).
Choline restores respiration in Psd1-deficient yeast by replenishing mitochondrial phosphatidylethanolamine
.
J. Biol. Chem.
296
,
100539
.
Ikon
,
N.
,
Su
,
B.
,
Hsu
,
F. F.
,
Forte
,
T. M.
and
Ryan
,
R. O.
(
2015
).
Exogenous cardiolipin localizes to mitochondria and prevents TAZ knockdown-induced apoptosis in myeloid progenitor cells
.
Biochem. Biophys. Res. Commun.
464
,
580
-
585
.
Ikon
,
N.
,
Hsu
,
F. F.
,
Shearer
,
J.
,
Forte
,
T. M.
and
Ryan
,
R. O.
(
2018
).
Evaluation of cardiolipin nanodisks as lipid replacement therapy for Barth syndrome
.
J. Biomed. Res.
32
,
107
-
112
.
Iriondo
,
M. N.
,
Etxaniz
,
A.
,
Varela
,
Y. R.
,
Ballesteros
,
U.
,
Hervas
,
J. H.
,
Montes
,
L. R.
,
Goni
,
F. M.
and
Alonso
,
A.
(
2022
).
LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs
.
Autophagy
18
,
2985
-
3003
.
Jeong
,
H.
,
Park
,
J.
,
Jun
,
Y.
and
Lee
,
C.
(
2017
).
Crystal structures of Mmm1 and Mdm12-Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites
.
Proc. Natl. Acad. Sci. USA
114
,
E9502
-
E9511
.
Ji
,
J.
and
Greenberg
,
M. L.
(
2022
).
Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome
.
J. Inherit. Metab. Dis.
45
,
60
-
71
.
Jiang
,
F.
,
Rizavi
,
H. S.
and
Greenberg
,
M. L.
(
1997
).
Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources
.
Mol. Microbiol.
26
,
481
-
491
.
John Peter
,
A. T.
,
Petrungaro
,
C.
,
Peter
,
M.
and
Kornmann
,
B.
(
2022
).
METALIC reveals interorganelle lipid flux in live cells by enzymatic mass tagging
.
Nat. Cell Biol.
24
,
996
-
1004
.
Johnson
,
J. M.
,
Peterlin
,
A. D.
,
Balderas
,
E.
,
Sustarsic
,
E. G.
,
Maschek
,
J. A.
,
Lang
,
M. J.
,
Jara-Ramos
,
A.
,
Panic
,
V.
,
Morgan
,
J. T.
,
Villanueva
,
C. J.
et al. 
(
2023
).
Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis
.
Sci. Adv.
9
,
eade7864
.
Joshi
,
A. S.
,
Thompson
,
M. N.
,
Fei
,
N.
,
Hüttemann
,
M.
and
Greenberg
,
M. L.
(
2012
).
Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae
.
J. Biol. Chem.
287
,
17589
-
17597
.
Jovanovic
,
O.
,
Chekashkina
,
K.
,
Skulj
,
S.
,
Zuna
,
K.
,
Vazdar
,
M.
,
Bashkirov
,
P. V.
and
Pohl
,
E. E.
(
2022
).
Membrane lipid reshaping underlies oxidative stress sensing by the mitochondrial proteins UCP1 and ANT1
.
Antioxidants (Basel)
11
,
2314
.
Kagan
,
V. E.
,
Jiang
,
J.
,
Huang
,
Z.
,
Tyurina
,
Y. Y.
,
Desbourdes
,
C.
,
Cottet-Rousselle
,
C.
,
Dar
,
H. H.
,
Verma
,
M.
,
Tyurin
,
V. A.
,
Kapralov
,
A. A.
et al. 
(
2016
).
NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy
.
Cell Death Differ.
23
,
1140
-
1151
.
Kameoka
,
S.
,
Adachi
,
Y.
,
Okamoto
,
K.
,
Iijima
,
M.
and
Sesaki
,
H.
(
2018
).
Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics
.
Trends Cell Biol.
28
,
67
-
76
.
Kawano
,
S.
,
Tamura
,
Y.
,
Kojima
,
R.
,
Bala
,
S.
,
Asai
,
E.
,
Michel
,
A. H.
,
Kornmann
,
B.
,
Riezman
,
I.
,
Riezman
,
H.
,
Sakae
,
Y.
et al. 
(
2018
).
Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES
.
J. Cell Biol.
217
,
959
-
974
.
Killackey
,
S. A.
,
Philpott
,
D. J.
and
Girardin
,
S. E.
(
2020
).
Mitophagy pathways in health and disease
.
J. Cell Biol.
219
,
e202004029
.
Kim
,
H.
,
Lee
,
S.
,
Jun
,
Y.
and
Lee
,
C.
(
2022
).
Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites
.
Nat. Commun.
13
,
3702
.
Kojima
,
R.
,
Endo
,
T.
and
Tamura
,
Y.
(
2016
).
A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro
.
Sci. Rep.
6
,
30777
.
Kornmann
,
B.
(
2020
).
The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes
.
Biol. Chem.
401
,
811
-
820
.
Kornmann
,
B.
,
Currie
,
E.
,
Collins
,
S. R.
,
Schuldiner
,
M.
,
Nunnari
,
J.
,
Weissman
,
J. S.
and
Walter
,
P.
(
2009
).
An ER-mitochondria tethering complex revealed by a synthetic biology screen
.
Science
325
,
477
-
481
.
Kumar
,
N.
,
Leonzino
,
M.
,
Hancock-Cerutti
,
W.
,
Horenkamp
,
F. A.
,
Li
,
P.
,
Lees
,
J. A.
,
Wheeler
,
H.
,
Reinisch
,
K. M.
and
De Camilli
,
P.
(
2018
).
VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites
.
J. Cell Biol.
217
,
3625
-
3639
.
Lang
,
A. B.
,
John Peter
,
A. T.
,
Walter
,
P.
and
Kornmann
,
B.
(
2015
).
ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13
.
J. Cell Biol.
210
,
883
-
890
.
Le Guerroue
,
F.
,
Eck
,
F.
,
Jung
,
J.
,
Starzetz
,
T.
,
Mittelbronn
,
M.
,
Kaulich
,
M.
and
Behrends
,
C.
(
2017
).
Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway
.
Mol. Cell
68
,
786
-
796.e6
.
Lee
,
A. G.
(
2004
).
How lipids affect the activities of integral membrane proteins
.
Biochim. Biophys. Acta
1666
,
62
-
87
.
Lee
,
R. G.
,
Balasubramaniam
,
S.
,
Stentenbach
,
M.
,
Kralj
,
T.
,
McCubbin
,
T.
,
Padman
,
B.
,
Smith
,
J.
,
Riley
,
L. G.
,
Priyadarshi
,
A.
,
Peng
,
L.
et al. 
(
2022
).
Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease
.
Hum. Mol. Genet.
31
,
3597
-
3612
.
Lewin
,
T. M.
,
Schwerbrock
,
N. M.
,
Lee
,
D. P.
and
Coleman
,
R. A.
(
2004
).
Identification of a new glycerol-3-phosphate acyltransferase isoenzyme, mtGPAT2, in mitochondria
.
J. Biol. Chem.
279
,
13488
-
13495
.
Li
,
Y.
,
Lou
,
W.
,
Raja
,
V.
,
Denis
,
S.
,
Yu
,
W.
,
Schmidtke
,
M. W.
,
Reynolds
,
C. A.
,
Schlame
,
M.
,
Houtkooper
,
R. H.
and
Greenberg
,
M. L.
(
2019
).
Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function
.
J. Biol. Chem.
294
,
11568
-
11578
.
Li
,
Y.
,
Lou
,
W.
,
Grevel
,
A.
,
Bottinger
,
L.
,
Liang
,
Z.
,
Ji
,
J.
,
Patil
,
V. A.
,
Liu
,
J.
,
Ye
,
C.
,
Huttemann
,
M.
et al. 
(
2020
).
Cardiolipin-deficient cells have decreased levels of the iron-sulfur biogenesis protein frataxin
.
J. Biol. Chem.
295
,
11928
-
11937
.
Liang
,
Z.
,
Schmidtke
,
M. W.
and
Greenberg
,
M. L.
(
2022
).
Current knowledge on the role of cardiolipin remodeling in the context of lipid oxidation and barth syndrome
.
Front. Mol. Biosci.
9
,
915301
.
Liberfarb
,
R. M.
,
Katsumi
,
O.
,
Fleischnick
,
E.
,
Shapiro
,
F.
and
Hirose
,
T.
(
1986
).
Tapetoretinal degeneration associated with multisystem abnormalities. A case report
.
Ophthalmic. Paediatr. Genet.
7
,
151
-
158
.
Liu
,
J.
,
Epand
,
R. F.
,
Durrant
,
D.
,
Grossman
,
D.
,
Chi
,
N. W.
,
Epand
,
R. M.
and
Lee
,
R. M.
(
2008
).
Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-alpha-induced apoptosis
.
Biochemistry
47
,
4518
-
4529
.
Lou
,
W.
,
Reynolds
,
C. A.
,
Li
,
Y.
,
Liu
,
J.
,
Huttemann
,
M.
,
Schlame
,
M.
,
Stevenson
,
D.
,
Strathdee
,
D.
and
Greenberg
,
M. L.
(
2018
).
Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: a myoblast model of Barth syndrome and cardiolipin deficiency
.
Biochim. Biophys. Acta Mol. Cell Biol. Lipids
1863
,
857
-
865
.
Lu
,
Y. W.
and
Claypool
,
S. M.
(
2015
).
Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes
.
Front. Genet.
6
,
3
.
Maas
,
R. R.
,
Iwanicka-Pronicka
,
K.
,
Kalkan Ucar
,
S.
,
Alhaddad
,
B.
,
AlSayed
,
M.
,
Al-Owain
,
M. A.
,
Al-Zaidan
,
H. I.
,
Balasubramaniam
,
S.
,
Baric
,
I.
,
Bubshait
,
D. K.
et al. 
(
2017
).
Progressive deafness-dystonia due to SERAC1 mutations: a study of 67 cases
.
Ann. Neurol.
82
,
1004
-
1015
.
Maeda
,
K.
,
Anand
,
K.
,
Chiapparino
,
A.
,
Kumar
,
A.
,
Poletto
,
M.
,
Kaksonen
,
M.
and
Gavin
,
A. C.
(
2013
).
Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins
.
Nature
501
,
257
-
261
.
Mahajan
,
M.
,
Bharambe
,
N.
,
Shang
,
Y.
,
Lu
,
B.
,
Mandal
,
A.
,
Madan Mohan
,
P.
,
Wang
,
R.
,
Boatz
,
J. C.
,
Manuel Martinez Galvez
,
J.
,
Shnyrova
,
A. V.
et al. 
(
2021
).
NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission
.
Proc. Natl. Acad. Sci. USA
118
,
e2023079118
.
Malhotra
,
K.
,
Modak
,
A.
,
Nangia
,
S.
,
Daman
,
T. H.
,
Gunsel
,
U.
,
Robinson
,
V. L.
,
Mokranjac
,
D.
,
May
,
E. R.
and
Alder
,
N. N.
(
2017
).
Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50
.
Sci. Adv.
3
,
e1700532
.
Marsh
,
D.
(
2007
).
Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes
.
Biophys. J.
93
,
3884
-
3899
.
Mayr
,
J. A.
,
Haack
,
T. B.
,
Graf
,
E.
,
Zimmermann
,
F. A.
,
Wieland
,
T.
,
Haberberger
,
B.
,
Superti-Furga
,
A.
,
Kirschner
,
J.
,
Steinmann
,
B.
,
Baumgartner
,
M. R.
et al. 
(
2012
).
Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome
.
Am. J. Hum. Genet.
90
,
314
-
320
.
Miller
,
P. C.
,
Ren
,
M.
,
Schlame
,
M.
,
Toth
,
M. J.
and
Phoon
,
C. K. L.
(
2020
).
A bayesian analysis to determine the prevalence of barth syndrome in the pediatric population
.
J. Pediatr.
217
,
139
-
144
.
Miyata
,
N.
,
Watanabe
,
Y.
,
Tamura
,
Y.
,
Endo
,
T.
and
Kuge
,
O.
(
2016
).
Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria
.
J. Cell Biol.
214
,
77
-
88
.
Monteiro-Cardoso
,
V. F.
,
Rochin
,
L.
,
Arora
,
A.
,
Houcine
,
A.
,
Jaaskelainen
,
E.
,
Kivela
,
A. M.
,
Sauvanet
,
C.
,
Le Bars
,
R.
,
Marien
,
E.
,
Dehairs
,
J.
et al. 
(
2022
).
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine
.
Cell Rep.
40
,
111364
.
Moser von Filseck
,
J.
,
Copic
,
A.
,
Delfosse
,
V.
,
Vanni
,
S.
,
Jackson
,
C. L.
,
Bourguet
,
W.
and
Drin
,
G.
(
2015
).
INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4–phosphate
.
Science
349
,
432
-
436
.
Musatov
,
A.
and
Sedlak
,
E.
(
2017
).
Role of cardiolipin in stability of integral membrane proteins
.
Biochimie
142
,
102
-
111
.
Nguyen
,
T. T.
,
Lewandowska
,
A.
,
Choi
,
J. Y.
,
Markgraf
,
D. F.
,
Junker
,
M.
,
Bilgin
,
M.
,
Ejsing
,
C. S.
,
Voelker
,
D. R.
,
Rapoport
,
T. A.
and
Shaw
,
J. M.
(
2012
).
Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance
.
Traffic
13
,
880
-
890
.
Oemer
,
G.
,
Koch
,
J.
,
Wohlfarter
,
Y.
,
Alam
,
M. T.
,
Lackner
,
K.
,
Sailer
,
S.
,
Neumann
,
L.
,
Lindner
,
H. H.
,
Watschinger
,
K.
,
Haltmeier
,
M.
et al. 
(
2020
).
Phospholipid Acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins
.
Cell Rep.
30
,
4281
-
4291.e4
.
Osman
,
C.
,
Haag
,
M.
,
Wieland
,
F. T.
,
Brugger
,
B.
and
Langer
,
T.
(
2010
).
A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4
.
EMBO J.
29
,
1976
-
1987
.
Park
,
Y. J.
,
Kim
,
S.
,
Shim
,
H. P.
,
Park
,
J. H.
,
Lee
,
G.
,
Kim
,
T. Y.
,
Jo
,
M. C.
,
Kwon
,
A. Y.
,
Lee
,
M.
,
Lee
,
S.
et al. 
(
2021
).
Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function
.
iScience
24
,
102899
.
Park
,
J. S.
,
Thorsness
,
M. K.
,
Policastro
,
R.
,
McGoldrick
,
L. L.
,
Hollingsworth
,
N. M.
,
Thorsness
,
P. E.
and
Neiman
,
A. M.
(
2016
).
Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites
.
Mol. Biol. Cell
27
,
2435
-
2449
.
Perry
,
M. S.
and
Sladky
,
J. T.
(
2008
).
Neuroradiologic findings in Sengers syndrome
.
Pediatr. Neurol.
39
,
113
-
115
.
Peter
,
V. G.
,
Quinodoz
,
M.
,
Pinto-Basto
,
J.
,
Sousa
,
S. B.
,
Di Gioia
,
S. A.
,
Soares
,
G.
,
Ferraz Leal
,
G.
,
Silva
,
E. D.
,
Pescini Gobert
,
R.
,
Miyake
,
N.
et al. 
(
2019
).
The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in the PISD gene
.
Genet. Med.
21
,
2734
-
2743
.
Pfeiffer
,
K.
,
Gohil
,
V.
,
Stuart
,
R. A.
,
Hunte
,
C.
,
Brandt
,
U.
,
Greenberg
,
M. L.
and
Schagger
,
H.
(
2003
).
Cardiolipin stabilizes respiratory chain supercomplexes
.
J. Biol. Chem.
278
,
52873
-
52880
.
Potting
,
C.
,
Wilmes
,
C.
,
Engmann
,
T.
,
Osman
,
C.
and
Langer
,
T.
(
2010
).
Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35
.
EMBO J.
29
,
2888
-
2898
.
Potting
,
C.
,
Tatsuta
,
T.
,
Konig
,
T.
,
Haag
,
M.
,
Wai
,
T.
,
Aaltonen
,
M. J.
and
Langer
,
T.
(
2013
).
TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid
.
Cell Metab.
18
,
287
-
295
.
Reid Thompson
,
W.
,
Hornby
,
B.
,
Manuel
,
R.
,
Bradley
,
E.
,
Laux
,
J.
,
Carr
,
J.
and
Vernon
,
H. J.
(
2021
).
A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism
.
Genet. Med.
23
,
471
-
478
.
Riekhof
,
W. R.
,
Wu
,
J.
,
Jones
,
J. L.
and
Voelker
,
D. R.
(
2007
).
Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae
.
J. Biol. Chem.
282
,
28344
-
28352
.
Rigaud
,
C.
,
Lebre
,
A. S.
,
Touraine
,
R.
,
Beaupain
,
B.
,
Ottolenghi
,
C.
,
Chabli
,
A.
,
Ansquer
,
H.
,
Ozsahin
,
H.
,
Di Filippo
,
S.
,
De Lonlay
,
P.
et al. 
(
2013
).
Natural history of Barth syndrome: a national cohort study of 22 patients
.
Orphanet J. Rare Dis.
8
,
70
.
Ronvelia
,
D.
,
Greenwood
,
J.
,
Platt
,
J.
,
Hakim
,
S.
and
Zaragoza
,
M. V.
(
2012
).
Intrafamilial variability for novel TAZ gene mutation: Barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle
.
Mol. Genet. Metab.
107
,
428
-
432
.
Saita
,
S.
,
Tatsuta
,
T.
,
Lampe
,
P. A.
,
Konig
,
T.
,
Ohba
,
Y.
and
Langer
,
T.
(
2018
).
PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria
.
EMBO J.
37
,
e97909
.
Saric
,
A.
,
Andreau
,
K.
,
Armand
,
A. S.
,
Møller
,
I. M.
and
Petit
,
P. X.
(
2016
).
Barth syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies
.
Front. Genet.
6
,
359
.
Sarig
,
O.
,
Goldsher
,
D.
,
Nousbeck
,
J.
,
Fuchs-Telem
,
D.
,
Cohen-Katsenelson
,
K.
,
Iancu
,
T. C.
,
Manov
,
I.
,
Saada
,
A.
,
Sprecher
,
E.
and
Mandel
,
H.
(
2013
).
Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1
.
Am. J. Med. Genet. A
161A
,
2204
-
2215
.
Schuler
,
M. H.
,
Di Bartolomeo
,
F.
,
Martensson
,
C. U.
,
Daum
,
G.
and
Becker
,
T.
(
2016
).
Phosphatidylcholine affects inner membrane protein translocases of mitochondria
.
J. Biol. Chem.
291
,
18718
-
18729
.
Scorrano
,
L.
,
De Matteis
,
M. A.
,
Emr
,
S.
,
Giordano
,
F.
,
Hajnoczky
,
G.
,
Kornmann
,
B.
,
Lackner
,
L. L.
,
Levine
,
T. P.
,
Pellegrini
,
L.
,
Reinisch
,
K.
et al. 
(
2019
).
Coming together to define membrane contact sites
.
Nat. Commun.
10
,
1287
.
Sengers
,
R. C.
,
Trijbels
,
J. M.
,
Willems
,
J. L.
,
Daniels
,
O.
and
Stadhouders
,
A. M.
(
1975
).
Congenital cataract and mitochondrial myopathy of skeletal and heart muscle associated with lactic acidosis after exercise
.
J. Pediatr.
86
,
873
-
880
.
Senoo
,
N.
,
Kandasamy
,
S.
,
Ogunbona
,
O. B.
,
Baile
,
M. G.
,
Lu
,
Y.
and
Claypool
,
S. M.
(
2020
).
Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast
.
Sci. Adv.
6
,
eabb0780
.
Shaw
,
J. M.
and
Nunnari
,
J.
(
2002
).
Mitochondrial dynamics and division in budding yeast
.
Trends Cell Biol.
12
,
178
-
184
.
Shiao
,
Y. J.
,
Lupo
,
G.
and
Vance
,
J. E.
(
1995
).
Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine
.
J. Biol. Chem.
270
,
11190
-
11198
.
Srivastava
,
S. R.
,
Zadafiya
,
P.
and
Mahalakshmi
,
R.
(
2018
).
Hydrophobic mismatch modulates stability and plasticity of human mitochondrial VDAC2
.
Biophys. J.
115
,
2386
-
2394
.
Steenbergen
,
R.
,
Nanowski
,
T. S.
,
Beigneux
,
A.
,
Kulinski
,
A.
,
Young
,
S. G.
and
Vance
,
J. E.
(
2005
).
Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects
.
J. Biol. Chem.
280
,
40032
-
40040
.
Sud
,
M.
,
Fahy
,
E.
,
Cotter
,
D.
,
Brown
,
A.
,
Dennis
,
E. A.
,
Glass
,
C. K.
,
Merrill
,
A. H.
, Jr
,
Murphy
,
R. C.
,
Raetz
,
C. R.
,
Russell
,
D. W.
et al. 
(
2007
).
LMSD: LIPID MAPS structure database
.
Nucleic Acids Res.
35
,
D527
-
D532
.
Sustarsic
,
E. G.
,
Ma
,
T.
,
Lynes
,
M. D.
,
Larsen
,
M.
,
Karavaeva
,
I.
,
Havelund
,
J. F.
,
Nielsen
,
C. H.
,
Jedrychowski
,
M. P.
,
Moreno-Torres
,
M.
,
Lundh
,
M.
et al. 
(
2018
).
Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis
.
Cell Metab.
28
,
159
-
174
.
Suzuki-Hatano
,
S.
,
Saha
,
M.
,
Rizzo
,
S. A.
,
Witko
,
R. L.
,
Gosiker
,
B. J.
,
Ramanathan
,
M.
,
Soustek
,
M. S.
,
Jones
,
M. D.
,
Kang
,
P. B.
,
Byrne
,
B. J.
et al. 
(
2019
).
AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function in barth syndrome
.
Hum. Gene. Ther.
30
,
139
-
154
.
Szeto
,
H. H.
(
2014
).
First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics
.
Br. J. Pharmacol.
171
,
2029
-
2050
.
Tamura
,
Y.
,
Endo
,
T.
,
Iijima
,
M.
and
Sesaki
,
H.
(
2009
).
Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
.
J. Cell Biol.
185
,
1029
-
1045
.
Tamura
,
Y.
,
Harada
,
Y.
,
Nishikawa
,
S.
,
Yamano
,
K.
,
Kamiya
,
M.
,
Shiota
,
T.
,
Kuroda
,
T.
,
Kuge
,
O.
,
Sesaki
,
H.
,
Imai
,
K.
et al. 
(
2013
).
Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
.
Cell Metab.
17
,
709
-
718
.
Tamura
,
Y.
,
Kawano
,
S.
and
Endo
,
T.
(
2019
).
Organelle contact zones as sites for lipid transfer
.
J. Biochem.
165
,
115
-
123
.
Tamura
,
Y.
,
Onguka
,
O.
,
Hobbs
,
A. E.
,
Jensen
,
R. E.
,
Iijima
,
M.
,
Claypool
,
S. M.
and
Sesaki
,
H.
(
2012
).
Role for two conserved intermembrane space proteins, Ups1p and Ups2p, in intra-mitochondrial phospholipid trafficking
.
J. Biol. Chem.
287
,
15205
-
15218
.
Tamura
,
Y.
,
Sesaki
,
H.
and
Endo
,
T.
(
2014
).
Phospholipid transport via mitochondria
.
Traffic
15
,
933
-
945
.
Tan
,
T.
,
Ozbalci
,
C.
,
Brügger
,
B.
,
Rapaport
,
D.
and
Dimmer
,
K. S.
(
2013
).
Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis
.
J. Cell Sci.
126
,
3563
-
3574
.
Tasseva
,
G.
,
Bai
,
H. D.
,
Davidescu
,
M.
,
Haromy
,
A.
,
Michelakis
,
E.
and
Vance
,
J. E.
(
2013
).
Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology
.
J. Biol. Chem.
288
,
4158
-
4173
.
Tatsuta
,
T.
and
Langer
,
T.
(
2017
).
Prohibitins
.
Curr. Biol.
27
,
R629
-
R631
.
Taylor
,
W. A.
and
Hatch
,
G. M.
(
2009
).
Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1)
.
J. Biol. Chem.
284
,
30360
-
30371
.
Tillman
,
T. S.
and
Cascio
,
M.
(
2003
).
Effects of membrane lipids on ion channel structure and function
.
Cell Biochem. Biophys.
38
,
161
-
190
.
Trotter
,
P. J.
,
Pedretti
,
J.
and
Voelker
,
D. R.
(
1993
).
Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele
.
J. Biol. Chem.
268
,
21416
-
21424
.
van den Brink-van der Laan
,
E.
,
Killian
,
J. A.
and
de Kruijff
,
B.
(
2004
).
Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile
.
Biochim. Biophys. Acta
1666
,
275
-
288
.
Vaz
,
F. M.
,
van Lenthe
,
H.
,
Vervaart
,
M. A. T.
,
Stet
,
F. S.
,
Klinkspoor
,
J. H.
,
Vernon
,
H. J.
,
Goorden
,
S. M. I.
,
Houtkooper
,
R. H.
,
Kulik
,
W.
and
Wanders
,
R. J. A.
(
2022
).
An improved functional assay in blood spot to diagnose Barth syndrome using the monolysocardiolipin/cardiolipin ratio
.
J. Inherit. Metab. Dis.
45
,
29
-
37
.
Vukotic
,
M.
,
Nolte
,
H.
,
Konig
,
T.
,
Saita
,
S.
,
Ananjew
,
M.
,
Kruger
,
M.
,
Tatsuta
,
T.
and
Langer
,
T.
(
2017
).
Acylglycerol kinase mutated in sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria
.
Mol. Cell
67
,
471
-
483.e7
.
Wang
,
W.
,
Chen
,
X.
,
Zhang
,
L.
,
Yi
,
J.
,
Ma
,
Q.
,
Yin
,
J.
,
Zhuo
,
W.
,
Gu
,
J.
and
Yang
,
M.
(
2020
).
Atomic structure of human TOM core complex
.
Cell Discov.
6
,
67
.
Wang
,
S.
,
Yazawa
,
E.
,
Keating
,
E.
,
Mazumdar
,
N.
,
Hauschild
,
A.
,
Ma
,
Q.
,
Wu
,
H.
,
Xu
,
Y.
,
Shi
,
X.
,
Strathdee
,
D.
et al. 
(
2023
).
Genetic modifiers modulate phenotypic expression of tafazzin deficiency in a mouse model of Barth syndrome
.
Hum. Mol. Genet..
32
,
2055
-
2067
.
Wang
,
Y.
,
Zhang
,
X.
,
Wen
,
Y.
,
Li
,
S.
,
Lu
,
X.
,
Xu
,
R.
and
Li
,
C.
(
2021
).
Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases
.
Front. Cell Dev. Biol.
9
,
774989
.
Wong
,
L. H.
,
Gatta
,
A. T.
and
Levine
,
T. P.
(
2019
).
Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes
.
Nat. Rev. Mol. Cell Biol.
20
,
85
-
101
.
Wortmann
,
S.
,
Rodenburg
,
R. J.
,
Huizing
,
M.
,
Loupatty
,
F. J.
,
de Koning
,
T.
,
Kluijtmans
,
L. A.
,
Engelke
,
U.
,
Wevers
,
R.
,
Smeitink
,
J. A.
and
Morava
,
E.
(
2006
).
Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation
.
Mol. Genet. Metab.
88
,
47
-
52
.
Wortmann
,
S. B.
,
Vaz
,
F. M.
,
Gardeitchik
,
T.
,
Vissers
,
L. E.
,
Renkema
,
G. H.
,
Schuurs-Hoeijmakers
,
J. H.
,
Kulik
,
W.
,
Lammens
,
M.
,
Christin
,
C.
,
Kluijtmans
,
L. A.
et al. 
(
2012
).
Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness
.
Nat. Genet.
44
,
797
-
802
.
Wortmann
,
S. B.
,
Espeel
,
M.
,
Almeida
,
L.
,
Reimer
,
A.
,
Bosboom
,
D.
,
Roels
,
F.
,
de Brouwer
,
A. P.
and
Wevers
,
R. A.
(
2015
).
Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids
.
J. Inherit. Metab. Dis.
38
,
99
-
110
.
Wurmser
,
A. E.
,
Sato
,
T. K.
and
Emr
,
S. D.
(
2000
).
New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion
.
J. Cell Biol.
151
,
551
-
562
.
Xu
,
Y.
,
Anjaneyulu
,
M.
,
Donelian
,
A.
,
Yu
,
W.
,
Greenberg
,
M. L.
,
Ren
,
M.
,
Owusu-Ansah
,
E.
and
Schlame
,
M.
(
2019
).
Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin
.
Proc. Natl. Acad. Sci. USA
116
,
11235
-
11240
.
Xu
,
Y.
,
Erdjument-Bromage
,
H.
,
Phoon
,
C. K. L.
,
Neubert
,
T. A.
,
Ren
,
M.
and
Schlame
,
M.
(
2021
).
Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane
.
EMBO J.
40
,
e108428
.
Xu
,
Y.
,
Kelley
,
R. I.
,
Blanck
,
T. J.
and
Schlame
,
M.
(
2003
).
Remodeling of cardiolipin by phospholipid transacylation
.
J. Biol. Chem.
278
,
51380
-
51385
.
Xu
,
Y.
,
Malhotra
,
A.
,
Ren
,
M.
and
Schlame
,
M.
(
2006
).
The enzymatic function of tafazzin
.
J. Biol. Chem.
281
,
39217
-
39224
.
Yan
,
L.
,
Qi
,
Y.
,
Ricketson
,
D.
,
Li
,
L.
,
Subramanian
,
K.
,
Zhao
,
J.
,
Yu
,
C.
,
Wu
,
L.
,
Sarsam
,
R.
,
Wong
,
M.
et al. 
(
2020
).
Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1
.
Proc. Natl. Acad. Sci. USA
117
,
4061
-
4070
.
Yang
,
X.
,
Liang
,
J.
,
Ding
,
L.
,
Li
,
X.
,
Lam
,
S. M.
,
Shui
,
G.
,
Ding
,
M.
and
Huang
,
X.
(
2019
).
Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms
.
PLoS Genet.
15
,
e1008548
.
Yeo
,
H. K.
,
Park
,
T. H.
,
Kim
,
H. Y.
,
Jang
,
H.
,
Lee
,
J.
,
Hwang
,
G. S.
,
Ryu
,
S. E.
,
Park
,
S. H.
,
Song
,
H. K.
,
Ban
,
H. S.
et al. 
(
2021
).
Phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes
.
EMBO Rep.
22
,
e51323
.
Yi
,
Q.
,
Yao
,
S.
,
Ma
,
B.
and
Cang
,
X.
(
2022
).
The effects of cardiolipin on the structural dynamics of the mitochondrial ADP/ATP carrier in its cytosol-open state
.
J. Lipid Res.
63
,
100227
.
Zegallai
,
H. M.
and
Hatch
,
G. M.
(
2021
).
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets
.
Mol. Cell. Biochem.
476
,
1605
-
1629
.
Zhang
,
M.
,
Mileykovskaya
,
E.
and
Dowhan
,
W.
(
2005
).
Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria
.
J. Biol. Chem.
280
,
29403
-
29408
.
Zhang
,
J.
,
Guan
,
Z.
,
Murphy
,
A. N.
,
Wiley
,
S. E.
,
Perkins
,
G. A.
,
Worby
,
C. A.
,
Engel
,
J. L.
,
Heacock
,
P.
,
Nguyen
,
O. K.
,
Wang
,
J. H.
et al. 
(
2011
).
Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis
.
Cell Metab.
13
,
690
-
700
.
Zhang
,
J.
,
Liu
,
X.
,
Nie
,
J.
and
Shi
,
Y.
(
2022
).
Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome
.
Autophagy
18
,
2134
-
2149
.
Zhao
,
T.
,
Goedhart
,
C. M.
,
Sam
,
P. N.
,
Sabouny
,
R.
,
Lingrell
,
S.
,
Cornish
,
A. J.
,
Lamont
,
R. E.
,
Bernier
,
F. P.
,
Sinasac
,
D.
,
Parboosingh
,
J. S.
et al. 
(
2019
).
PISD is a mitochondrial disease gene causing skeletal dysplasia, cataracts, and white matter changes
.
Life Sci. Alliance
2
,
e201900353
.
Zhuo
,
W.
,
Zhou
,
H.
,
Guo
,
R.
,
Yi
,
J.
,
Zhang
,
L.
,
Yu
,
L.
,
Sui
,
Y.
,
Zeng
,
W.
,
Wang
,
P.
and
Yang
,
M.
(
2021
).
Structure of intact human MCU supercomplex with the auxiliary MICU subunits
.
Protein Cell
12
,
220
-
229
.
Zinser
,
E.
and
Daum
,
G.
(
1995
).
Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae
.
Yeast
11
,
493
-
536
.

Competing interests

The authors declare no competing or financial interests.