The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.

In its endeavour to fend off infection and cancerous growth, the mammalian immune system relies on both efficient communication between cellular players and the ability to eliminate harmful agents in a precisely focused manner.

Immune cells can communicate directly with each other by forming close cell–cell contacts that have become known as immune synapses. In addition to this internal communication, the immune system makes use of the synapse during direct attack on infected and cancerous cells – the formation of immune synapses allows killer cells to address the challenge of specifically eliminating ‘dangerous’ cells whilst leaving healthy cells unaffected. Thus, it is only after the establishment of the focused synapse interface that cytotoxic T lymphocytes (CTLs) and natural killer cells deliver a cocktail of cytotoxic substances from specialised secretory lysosomes (cytolytic granules) to destroy the target. In this review, we will provide an ‘at a glance’ view of the CTL synapse, highlighting features of its structure and roles in signalling, secretion and immunodeficiencies.

The formation of immune synapses involves the reorganisation of receptors that are involved in recognition and adhesion to form specialised functional domains at the interface between two cells. The first clear demonstration of distinct structural molecular patterning in response to target engagement came from work by Kupfer in CD4+ T cells (Monks et al., 1998), with the rapid dynamics revealed using artificial bilayers (Grakoui et al., 1999). This showed T-cell receptor (TCR) clustering to the centre of the immune synapse, or central supramolecular activation cluster (cSMAC), with protein kinase C (PKC)-θ and Lck. This c-SMAC is surrounded by a ring of adhesion molecules – lymphocyte function-associated antigen 1 (LFA-1) and its adaptor talin, which are together referred to as the peripheral SMAC (pSMAC). Subsequent immunofluorescence imaging has revealed an accumulation of actin surrounding the pSMAC, sometimes referred to as the distal SMAC (dSMAC), creating a now well-known ‘bulls-eye’ configuration (see poster).

A similar structure has subsequently been identified in CD8+ CTLs with a discrete secretory domain next to the cSMAC and within the pSMAC (Potter et al., 2001; Stinchcombe et al., 2001b). These organised synapses between cells are widely adopted throughout the immune system, with similar layouts being used for both B- and T-cell activation, and even for phagocytosis of particulates by macrophages (Freeman et al., 2016; Goodridge et al., 2011; Niedergang et al., 2016).

Another important feature of the synapse structure is the reorganisation of the cytoskeleton. The microtubule organising centre (MTOC) has long been known to polarise towards the synapse in CD4+, CD8+ and natural killer cells (Geiger et al., 1982; Kupfer and Dennert, 1984; Kupfer et al., 1983, 1985), and more recently it has been shown that one of the centrioles at the centre of the MTOC contacts the cell membrane next to the cSMAC, focusing secretion of cytotoxic components next to the point of TCR signalling (Stinchcombe et al., 2001b). This ensures precise secretion of the cytotoxic components perforin and granzymes, and might also focus the delivery of the alternative cell death mediator FasL (Bossi and Griffiths, 1999; Kägi et al., 1994; Stinchcombe et al., 2006; Tschopp and Nabholz, 1990).

Box 1. TCR signalling in a nutshell

TCR signalling begins with the activating phosphorylation of the kinases Lck and ζ-chain (TCR)-associated protein of 70 kDa (ZAP-70) when Lck associates with and phosphorylates the TCR, which promotes the recruitment and activation of ZAP-70 (Chan et al., 1992; Iwashima et al., 1994). In brief, active ZAP-70 phosphorylates tyrosine residues on linker of activated T cells (LAT) and Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP76; also known as LCP2) to generate the LAT signalosome, a hub for secondary messenger generation (see poster) (Bubeck Wardenburg et al., 1996; Chakraborty and Weiss, 2014; Paz et al., 2001). Associated active phospholipase Cγ1 (also known as PLCG1) generates two of these messengers, inositol triphosphate (IP3) and diacylglycerol (DAG) (Yablonski et al., 1998). IP3 binds to its ER-associated receptor to induce a global Ca2+ flux, which is crucial for activation of the nuclear factor of activated T cells (NFAT) complex, whereas DAG recruits other signaling molecules to the membrane. These include protein-kinase-C-family members (PKCs) that activate integrin activity through phosphorylation of Rap guanine nucleotide exchange factor 2 (RapGEF2), thus activating Rap1; in addition, PKCs control myosin regulatory light chain behaviour to ensure efficient MTOC localisation to the immune synapse (Navarro and Cantrell, 2014; Quann et al., 2011). The signalling of PKCs is thought to be further amplified by their ability to phosphorylate the stabilising loop of protein kinase D2 (PRKD2). PRKD2 activity enhances transcription of the key cytokines interferon-γ and interleukin-2, and promotes Ras activity (Navarro et al., 2014a,b). Ras is further activated by the action of Ras guanyl-nucleotide-releasing proteins (RasGRPs), which themselves are recruited by DAG into close proximity of PKCs, and functions by initiating the mitogen-activated protein kinase (MAPK) cascade. This cascade has dramatic effects on CTL metabolism, proliferation, transcription, translation and even the microtubule network through the ERK1/2 complex (Navarro and Cantrell, 2014).

CTLs identify their target cells through TCRs, whose signalling drives the dramatic reorganisation of the CTL cytoskeleton that goes with the establishment of a synapse.

Over the last 20 years, the biochemical outline of TCR signalling (see Box 1) has been extended with improving microscopy techniques, and the importance of the spatio-temporal dynamics of the process is now widely appreciated. Active TCR signalling is associated with the movement of small groups of TCR and LAT molecules (microclusters) from the synapse periphery toward the cSMAC, where TCRs are endocytosed to a recycling endosome. Once internalised, TCRs might be redelivered to the synapse or selectively trafficked for degradation, and so either enhance or diminish signalling (see poster). Along with direct players in the TCR cascade, inhibitory molecules and cytokines might also be delivered through vesicles to the synapse, both modulating signalling and communicating with the antigen-presenting cell independently of cytolytic granules (Purbhoo, 2013; Soares et al., 2013).

One of the pathways that has most recently been implicated in TCR signalling is the Hedgehog (Hh) pathway (see poster). Hh signalling is the trademark of signalling in the primary cilium, a structure absent only from haematopoietic cells and with surprising structural similarities to the synapse (Wheatley, 1995). In CD8+ T cells, Hh signalling is initiated by TCR signalling and causes the intracellular activation of Patched 1 and/or Patched 2 by Indian hedgehog (Ihh) on vesicles within the T cell. This inhibits repression of Smoothened (Smo) by Patched 1 and/or Patched 2, thereby activating Gli1 and driving expression of Hh target genes. In CD8+ T cells, a key Hh target gene encodes the protein Rac1, which plays a crucial role both in actin reorganisation and centrosome localisation to the synapse. Inhibition of Smo, either genetically or through use of chemical inhibitors, disrupts CTL-mediated killing (de la Roche et al., 2013).

Recently, the importance of mechanical force in formation of the synapse has become a subject of increasing investigation. To attach to and kill a target cell, the CTL must latch on tightly to its target, and this requires the activation of the integrin LFA-1 (Hogg et al., 2011). Work from the Burkhardt lab in CD4+ T cells has shown that full activation of LFA-1 requires F-actin flow, with intercellular adhesion molecule 1 (ICAM-1) on the antigen-presenting-cell side of the synapse providing physical resistance to promote this effect during synapse formation (Comrie et al., 2015a,b). Interestingly, progress in measuring two-dimensional binding kinetics has revealed similar roles for force in promoting adhesion, with catch bonds being formed by P-selectin, an adhesive molecule involved in CTL recruitment to sites of inflammation (Hirata et al., 2002; Marshall et al., 2003). Such catch bonds have recently been implicated in the ability of TCRs to distinguish between agonist and altered peptide ligands, which whilst they remain stimulatory, result in greatly reduced killing efficiency; however, the underlying biology has yet to be fully explored (Liu et al., 2014).

The development and refinement of high-speed live-cell imaging techniques has fuelled the investigation of the dynamics of synapse formation and CTL-mediated killing. Over the course of the past 10 years, the order and timing of some key steps in the attack have been unravelled, although some of the details vary somewhat depending on the technique and cell system used.

In vitro, when placed on a glass surface, CTLs migrate with a lamellipodium at the front and a uropod at the rear (see poster). As soon as a target cell is recognised, CTLs stop migrating and accumulate F-actin at the contact site. This is followed by a reduction in F-actin at the centre of the contact site within one minute after initial contact (Ritter et al., 2015). As a consequence, an F-actin ring appears at the edge of the interface, known as the dSMAC. At the same time, TCR microclusters gather at the centre of the interface to form the cSMAC.

During CTL migration, the centrosome (MTOC) is located away from the leading edge, behind the nucleus, in the uropod. When a target encounter triggers TCR signalling, the centrosome starts moving towards the immune synapse (Kuhn and Poenie, 2002). It is thought that ‘pioneer’ microtubules link the centrosome to the synapse interface, and their shortening and the motor protein dynein act together to reel the centrosome to the synapse (Combs et al., 2006; Yi et al., 2013). The centrosome finally docks at the plasma membrane next to the cSMAC, in a region where F-actin is depleted. It takes about six minutes from the cell–cell contact to centrosome docking at the synapse (Ritter et al., 2015) (see poster).

As cytolytic granules cluster around the centrosome, they move together with the centrosome towards the synapse where they release perforin and granzymes into the space between the CTL and the target (Ritter et al., 2015). Following the release of granule contents, perforin facilitates transport of granzymes into the target, which trigger rapid target cell death. Finally, the CTL detaches from the dying target cell and moves on to find the next target. A new lamellipodium is formed distant from the immune synapse. The centrosome detaches from the synapse membrane and a new uropod is formed as the CTL moves away (Ritter et al., 2015). Intriguingly, the signal to detach appears to be dependent upon the demise of the target cell through caspase activity (Jenkins et al., 2015).

Precise targeting of cytolytic granules towards exocytic sites opposite the target is mediated by an unusual mechanism that involves centrosome positioning to the immune synapse membrane. On CTL activation, the centrosome moves from the back of the cell around the nucleus and docks with the plasma membrane within the immune synapse, at the boundary between the cSMAC and secretory domain (Ritter et al., 2015; Stinchcombe et al., 2006; Yi et al., 2013).

Centrosome localisation at the plasma membrane is unusual, but also occurs in cells with cilia and flagella; here, the centrosome docks with the plasma membrane through the distal appendages of the mother centriole before extending to form a cilium or flagellum (Azimzadeh and Bornens, 2007). Intriguingly, centrosome docking at the CTL synapse appears to be remarkably similar to that during ciliogenesis, although a cilium does not form (Stinchcombe et al., 2015).

Centrosomes comprise an older, more mature, mother centriole that is characterised by two rings of appendages at the distal end of the centriole, and a younger daughter centriole, which is derived from the mother during centriole replication and lacks appendages. The distal-most appendages are involved in membrane association, whereas the subdistal appendages are involved in microtubule organisation. CTL centrosomes dock at the immune synapse during target killing, with the mother attaching to the membrane through the distal appendages of the mother centriole (Stinchcombe et al., 2015) (see poster). This organisation aligns the subdistal appendages and associated microtubules under the plasma membrane at the secretory domain where granule contents are released. The mechanisms of centrosome docking at the CTL synapse and during cilia formation are also similar, with both processes requiring Cep83 (Stinchcombe et al., 2015; Tanos et al., 2013). However, once the centrosome has docked, the pathways diverge. In ciliated cells, the centrosome-end-regulating proteins CP110 (also known as CCP110) and Cep97 are lost, and cilia formation proceeds, whereas CTL mother centrioles retain the CP110–Cep97 complex on docking during killing and show no signs of cilia formation (Stinchcombe et al., 2015). Because it has been recently shown that lymphocytes have the capacity to form cilia if CP110 is depleted (Prosser and Morrison, 2015), it is likely that the mechanisms involved in CP110 retention act to prevent cilia formation at the CTL synapse during killing (see poster). Preventing cilia formation prevents stabilisation of CTL centrosomes and ensures centrosome docking is only transient, thereby allowing the multiple polarisation events that are required for sequential killing of several targets.

Other similarities between cilia and the immune synapse have also been found in CD4+ T cells, including a role for intraflagellar transport (IFT) proteins, which are required for cilia formation, in TCR recycling (Finetti et al., 2009, 2014; Vivar et al., 2016). Electron microscopy tomography reveals a very similar organisation of the centrosome and secretory compartments in CD4+ T cells (Ueda et al., 2011), although centrosome docking is yet to be studied in CD4+ T cells.

The release of granule contents at the synapse is tightly controlled by a sophisticated protein machinery that coordinates the delivery, docking and fusion of granules at the plasma membrane (see poster). Malfunctioning of this machinery as a result of genetic defects in its components leads to the devastating immune deficiency condition familial haemophagocytic lymphohistiocytosis (FHL) with five subtypes (FHL1 to FHL5), and the related conditions Griscelli syndrome type 2 (GS2), Hermansky–Pudlak syndrome type 2 (HPS2) and Chediak–Higashi syndrome (CHS) (Chediak, 1952; Farquhar and Claireaux, 1952; Griscelli et al., 1978; Hermansky and Pudlak, 1959; Higashi, 1954). Mouse models of these conditions show that upon pathogen challenge, the genetic mutation impairs the secretion of pro-apoptotic factors from CTL (and natural killer) granules, whereas the production of cytokines and their release through a different secretory pathway appears to be enhanced (Brisse et al., 2015; de Saint Basile et al., 2015 preprint; Jenkins et al., 2015; Reefman et al., 2010). The inability of CTLs and natural killer cells to clear the infection whilst continuously secreting cytokines promotes the activity of effector immune cells, leading to a life-threatening hyper-inflammatory state (haemophagocytic lymphohistiocytosis, HLH) that requires immunosuppressive therapy and ultimately bone-marrow transplantation (Sieni et al., 2014). To date, four FHL-associated proteins have been identified and a fifth disease-linked genetic locus awaits further investigation (Côte et al., 2009; Feldmann et al., 2003; Ohadi et al., 1999; Stepp et al., 1999; zur Stadt et al., 2009, 2005). The known secretion factors at the CTL immune synapse are the putative vesicle-tethering protein Munc13-4 (also known as UNC13D; implicated in FHL3), the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein syntaxin 11 (implicated in FHL4), the syntaxin-binding protein Munc18-2 (also known as STXBP2; implicated in FHL5), the Munc13-4 binding partner Rab27a (implicated in GS2), the adaptor protein subunit AP3-β3A (also known as AP3B1; implicated in HPS2) and the lysosomal-trafficking regulator protein (LYST; implicated in CHS) (Barbosa et al., 1996; Barrat et al., 1996; Côte et al., 2009; Dell'Angelica et al., 1999; Feldmann et al., 2003; Fukai et al., 1996; Ménasché et al., 2000; Nagle et al., 1996; Perou et al., 1996; zur Stadt et al., 2009, 2005). These proteins are thought to act in successive steps during the maturation, transport and secretion of cytolytic granules (see poster).

HPS2 CTLs that lack the AP3 complex cannot transport their granules to the immune synapse, suggesting that AP3 might coordinate the delivery of a motor protein or a motor adaptor to the granule membrane (Clark et al., 2003). In CTLs from individuals with GS2, the loss of functional Rab27a means that granules polarise but fail to detach from microtubules and, therefore, cannot reach the plasma membrane (Haddad et al., 2001; Stinchcombe et al., 2001a). In CTLs, Rab27a functions in granule docking through its interaction with the vesicle tether Munc13-4, whereas in melanocytes, it has been shown to link to the actin-bound motor myosin Va to ‘capture’ melanosomes at their target membrane in the cell periphery (Elstak et al., 2011; Hume et al., 2001; Neeft et al., 2005; Shirakawa et al., 2004; Wu et al., 2001).

Munc13-4 associates with the cytolytic granules in attacking CTLs. In Munc13-4-deficient CTLs, granules reach the plasma membrane but cannot be ‘primed’ for secretion (Elstak et al., 2011; Feldmann et al., 2003). It has been suggested that in addition to the vesicle tethering interaction with Rab27a, Munc13 proteins also interact with SNARE complexes, the helical protein bundles that drive membrane fusions, through a MUN-domain (Basu et al., 2005; Guan et al., 2008).

Syntaxin 11 and Munc18-2 are binding partners that localise to the plasma membrane of CTLs and neutrophils; this strongly suggests that they cooperate to drive the final steps of granule fusion (Brochetta et al., 2008; Côte et al., 2009; Dieckmann et al., 2015; Hackmann et al., 2013; Halimani et al., 2014; Hellewell et al., 2014; zur Stadt et al., 2009). The loss of syntaxin 11 from the plasma membrane of Munc18-2-deficient CTLs supports the notion that Munc18-2 acts as a syntaxin 11 chaperone, similar to Munc18-1 chaperoning of syntaxin 1A; however, Munc18-2 has also been found to associate with granules in CTLs, mast cells and neutrophils where it may perform a yet unknown function, potentially in association with granule SNAREs (Brochetta et al., 2014, 2008; Dieckmann et al., 2015; Han et al., 2011; Martin-Verdeaux et al., 2003; Rowe et al., 2001).

Mutations in the LYST protein that give rise to CHS have been suggested to cause a fission defect that entails the formation of enlarged lysosomes, whose excessive size appears to prevent fusion at the immune synapse (Baetz et al., 1995; Durchfort et al., 2012). A recent report shows that overexpression of either Rab27a alone or Rab27a together with Slp3 (also known as SYTL3) partially restores granule secretion [measured by appearance of the lysosomal membrane protein CD107a (also known as LAMP1) at the cell surface] and that coexpression of Rab27a, Munc13-4 and Slp3 rescues the secretion defect of CHS CTLs. This gives rise to the suggestion that LYST might be involved in the trafficking of effectors that drive the maturation of perforin-containing vesicles into granules that are fully secretion competent (Sepulveda et al., 2015).

Two additional genetic defects have been linked to the immune synapse and can trigger the development of HLH, but they do not directly affect secretory factors. For instance, FHL2 arises owing to loss of the pro-apoptotic factor perforin from the cytolytic granules (Stepp et al., 1999). Interestingly, immune synapses formed by perforin-deficient CTLs and natural killer cells persist much longer than normal synapses; here, the FHL2 CTLs appear to become stuck on the targets that they fail to kill (Jenkins et al., 2015). Finally, in X-linked lymphoproliferative disease type 1 (XLP-1), the mutation of the signalling lymphocyte activation molecule (SLAM)-associated protein (SAP; also known as SH2D1A) disturbs key intracellular signalling processes that are exerted by SLAM (also known as SLAMF1) in natural killer cells and CTLs, thereby resulting in a defective killer response against Epstein-Barr-virus-infected cells (Coffey et al., 1998; Dupré et al., 2005), reviewed by (Tangye, 2014).

In this review, we have focused on the formation of the CTL immune synapse, which is a highly dynamic process that relies on the close interplay of signalling factors, cytoskeletal elements and membrane fusion machinery to deliver a rapid cytotoxic hit, which allow CTLs to be effective serial killers. There are many more aspects that are currently being explored, including the roles of motor proteins, positive and negative receptor signalling, mechano-sensing and CD4+ cells that acquire cytolytic potential. In addition, the understudied role of the target cell in forming the synapse and the signals that tell the CTL when to depart remain to be uncovered, along with a full understanding of how the CTL manages not to kill itself as it releases its deadly cytolytic load.

Funding

This work is supported by the Wellcome Trust [grant numbers 103930 and 100140].

Azimzadeh
,
J.
and
Bornens
,
M.
(
2007
).
Structure and duplication of the centrosome
.
J. Cell Sci.
120
,
2139
-
2142
.
Baetz
,
K.
,
Isaaz
,
S.
and
Griffiths
,
G. M.
(
1995
).
Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis
.
J. Immunol.
154
,
6122
-
6131
.
Barbosa
,
M. D. F. S.
,
Nguyen
,
Q. A.
,
Tchernev
,
V. T.
,
Ashley
,
J. A.
,
Detter
,
J. C.
,
Blaydes
,
S. M.
,
Brandt
,
S. J.
,
Chotai
,
D.
,
Hodgman
,
C.
,
Solari
,
R. C. E.
, et al.
(
1996
).
Identification of the homologous beige and Chediak–Higashi syndrome genes
.
Nature
382
,
262
-
265
.
Barrat
,
F. J.
,
Auloge
,
L.
,
Pastural
,
E.
,
Lagelouse
,
R. D.
,
Vilmer
,
E.
,
Cant
,
A. J.
,
Weissenbach
,
J.
,
Le Paslier
,
D.
,
Fischer
,
A.
and
de Saint Basile
,
G.
(
1996
).
Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42-43
.
Am. J. Hum. Genet.
59
,
625
-
632
.
Basu
,
J.
,
Shen
,
N.
,
Dulubova
,
I.
,
Lu
,
J.
,
Guan
,
R.
,
Guryev
,
O.
,
Grishin
,
N. V.
,
Rosenmund
,
C.
and
Rizo
,
J.
(
2005
).
A minimal domain responsible for Munc13 activity
.
Nat. Struct. Mol. Biol.
12
,
1017
-
1018
.
Bossi
,
G.
and
Griffiths
,
G. M.
(
1999
).
Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells
.
Nat. Med.
5
,
90
-
96
.
Brisse
,
E.
,
Wouters
,
C. H.
and
Matthys
,
P.
(
2015
).
Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders
.
Cytokine Growth Factor Rev.
26
,
263
-
280
.
Brochetta
,
C.
,
Vita
,
F.
,
Tiwari
,
N.
,
Scandiuzzi
,
L.
,
Soranzo
,
M. R.
,
Guérin-Marchand
,
C.
,
Zabucchi
,
G.
and
Blank
,
U.
(
2008
).
Involvement of Munc18 isoforms in the regulation of granule exocytosis in neutrophils
.
Biochim. Biophys. Acta
1783
,
1781
-
1791
.
Brochetta
,
C.
,
Suzuki
,
R.
,
Vita
,
F.
,
Soranzo
,
M. R.
,
Claver
,
J.
,
Madjene
,
L. C.
,
Attout
,
T.
,
Vitte
,
J.
,
Varin-Blank
,
N.
,
Zabucchi
,
G.
, et al.
(
2014
).
Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation
.
J. Immunol.
192
,
41
-
51
.
Bubeck Wardenburg
,
J.
,
Fu
,
C.
,
Jackman
,
J. K.
,
Flotow
,
H.
,
Wilkinson
,
S. E.
,
Williams
,
D. H.
,
Johnson
,
R.
,
Kong
,
G.
,
Chan
,
A. C.
and
Findell
,
P. R.
(
1996
).
Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function
.
J. Biol. Chem.
271
,
19641
-
19644
.
Chakraborty
,
A. K.
and
Weiss
,
A.
(
2014
).
Insights into the initiation of TCR signaling
.
Nat. Immunol.
15
,
798
-
807
.
Chan
,
A. C.
,
Iwashima
,
M.
,
Turck
,
C. W.
and
Weiss
,
A.
(
1992
).
ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain
.
Cell
71
,
649
-
662
.
Chediak
,
M. M.
(
1952
).
[New leukocyte anomaly of constitutional and familial character]
.
Rev. Hematol.
7
,
362
-
367
.
Clark
,
R. H.
,
Stinchcombe
,
J. C.
,
Day
,
A.
,
Blott
,
E.
,
Booth
,
S.
,
Bossi
,
G.
,
Hamblin
,
T.
,
Davies
,
E. G.
and
Griffiths
,
G. M.
(
2003
).
Adaptor protein 3–dependent microtubule-mediated movement of lytic granules to the immunological synapse
.
Nat. Immunol.
4
,
1111
-
1120
.
Coffey
,
A. J.
,
Brooksbank
,
R. A.
,
Brandau
,
O.
,
Oohashi
,
T.
,
Howell
,
G. R.
,
Bye
,
J. M.
,
Cahn
,
A. P.
,
Durham
,
J.
,
Heath
,
P.
,
Wray
,
P.
, et al.
(
1998
).
Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene
.
Nat. Genet.
20
,
129
-
135
.
Combs
,
J.
,
Kim
,
S. J.
,
Tan
,
S.
,
Ligon
,
L. A.
,
Holzbaur
,
E. L. F.
,
Kuhn
,
J.
and
Poenie
,
M.
(
2006
).
Recruitment of dynein to the Jurkat immunological synapse
.
Proc. Natl. Acad. Sci. USA
103
,
14883
-
14888
.
Comrie
,
W. A.
,
Babich
,
A.
and
Burkhardt
,
J. K.
(
2015a
).
F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse
.
J. Cell Biol.
208
,
475
-
491
.
Comrie
,
W. A.
,
Li
,
S.
,
Boyle
,
S.
and
Burkhardt
,
J. K.
(
2015b
).
The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility
.
J. Cell Biol.
208
,
457
-
473
.
Côte
,
M.
,
Ménager
,
M. M.
,
Burgess
,
A.
,
Mahlaoui
,
N.
,
Picard
,
C.
,
Schaffner
,
C.
,
Al-Manjomi
,
F.
,
Al-Harbi
,
M.
,
Alangari
,
A.
,
Le Deist
,
F.
, et al.
(
2009
).
Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells
.
J. Clin. Invest.
119
,
3765
-
3773
.
de la Roche
,
M.
,
Ritter
,
A. T.
,
Angus
,
K. L.
,
Dinsmore
,
C.
,
Earnshaw
,
C. H.
,
Reiter
,
J. F.
and
Griffiths
,
G. M.
(
2013
).
Hedgehog signaling controls T cell killing at the immunological synapse
.
Science
342
,
1247
-
1250
.
de Saint Basile
,
G.
,
Sepulveda
,
F. E.
,
Maschalidi
,
S.
and
Fischer
,
A.
(
2015
).
Cytotoxic granule secretion by lymphocytes and its link to immune homeostasis
.
F1000Res
4
,
930
. .
Dell'Angelica
,
E. C.
,
Shotelersuk
,
V.
,
Aguilar
,
R. C.
,
Gahl
,
W. A.
and
Bonifacino
,
J. S.
(
1999
).
Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor
.
Mol. Cell
3
,
11
-
21
.
Dieckmann
,
N. M. G.
,
Hackmann
,
Y.
,
Aricò
,
M.
and
Griffiths
,
G. M.
(
2015
).
Munc18-2 is required for Syntaxin 11 Localization on the Plasma Membrane in Cytotoxic T-Lymphocytes
.
Traffic
16
,
1330
-
1341
.
Dupré
,
L.
,
Andolfi
,
G.
,
Tangye
,
S. G.
,
Clementi
,
R.
,
Locatelli
,
F.
,
Aricò
,
M.
,
Aiuti
,
A.
and
Roncarolo
,
M.-G.
(
2005
).
SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells
.
Blood
105
,
4383
-
4389
.
Durchfort
,
N.
,
Verhoef
,
S.
,
Vaughn
,
M. B.
,
Shrestha
,
R.
,
Adam
,
D.
,
Kaplan
,
J.
and
Ward
,
D. M.
(
2012
).
The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion
.
Traffic
13
,
108
-
119
.
Elstak
,
E. D.
,
Neeft
,
M.
,
Nehme
,
N. T.
,
Voortman
,
J.
,
Cheung
,
M.
,
Goodarzifard
,
M.
,
Gerritsen
,
H. C.
,
van Bergen en Henegouwen
,
P. M. P.
,
Callebaut
,
I.
,
de Saint Basile
,
G.
, et al.
(
2011
).
The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane
.
Blood
118
,
1570
-
1578
.
Farquhar
,
J. W.
and
Claireaux
,
A. E.
(
1952
).
Familial haemophagocytic reticulosis
.
Arch. Dis. Child
27
,
519
-
525
.
Feldmann
,
J.
,
Callebaut
,
I.
,
Raposo
,
G.
,
Certain
,
S.
,
Bacq
,
D.
,
Dumont
,
C.
,
Lambert
,
N.
,
Ouachée-Chardin
,
M.
,
Chedeville
,
G.
,
Tamary
,
H.
, et al.
(
2003
).
Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3)
.
Cell
115
,
461
-
473
.
Finetti
,
F.
,
Paccani
,
S. R.
,
Riparbelli
,
M. G.
,
Giacomello
,
E.
,
Perinetti
,
G.
,
Pazour
,
G. J.
,
Rosenbaum
,
J. L.
and
Baldari
,
C. T.
(
2009
).
Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse
.
Nat. Cell Biol.
11
,
1332
-
1339
.
Finetti
,
F.
,
Patrussi
,
L.
,
Masi
,
G.
,
Onnis
,
A.
,
Galgano
,
D.
,
Lucherini
,
O. M.
,
Pazour
,
G. J.
and
Baldari
,
C. T.
(
2014
).
Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system
.
J. Cell Sci.
127
,
1924
-
1937
.
Freeman
,
S. A.
,
Goyette
,
J.
,
Furuya
,
W.
,
Woods
,
E. C.
,
Bertozzi
,
C. R.
,
Bergmeier
,
W.
,
Hinz
,
B.
,
van der Merwe
,
P. A.
,
Das
,
R.
and
Grinstein
,
S.
(
2016
).
Integrins form an expanding diffusional barrier that coordinates phagocytosis
.
Cell
164
,
128
-
140
.
Fukai
,
K.
,
Oh
,
J.
,
Karim
,
M. A.
,
Moore
,
K. J.
,
Kandil
,
H. H.
,
Ito
,
H.
,
Burger
,
J.
and
Spritz
,
R. A.
(
1996
).
Homozygosity mapping of the gene for Chediak-Higashi syndrome to chromosome 1q42-q44 in a segment of conserved synteny that includes the mouse beige locus (bg)
.
Am. J. Hum. Genet.
59
,
620
-
624
.
Geiger
,
B.
,
Rosen
,
D.
and
Berke
,
G.
(
1982
).
Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells
.
J. Cell Biol.
95
,
137
-
143
.
Goodridge
,
H. S.
,
Reyes
,
C. N.
,
Becker
,
C. A.
,
Katsumoto
,
T. R.
,
Ma
,
J.
,
Wolf
,
A. J.
,
Bose
,
N.
,
Chan
,
A. S. H.
,
Magee
,
A. S.
,
Danielson
,
M. E.
, et al.
(
2011
).
Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse
’.
Nature
472
,
471
-
475
.
Grakoui
,
A.
,
Bromley
,
S. K.
,
Sumen
,
C.
,
Davis
,
M. M.
,
Shaw
,
A. S.
,
Allen
,
P. M.
and
Dustin
,
M. L.
(
1999
).
The immunological synapse: a molecular machine controlling T cell activation
.
Science
285
,
221
-
227
.
Griscelli
,
C.
,
Durandy
,
A.
,
Guy-Grand
,
D.
,
Daguillard
,
F.
,
Herzog
,
C.
and
Prunieras
,
M.
(
1978
).
A syndrome associating partial albinism and immunodeficiency
.
Am. J. Med.
65
,
691
-
702
.
Guan
,
R.
,
Dai
,
H.
and
Rizo
,
J.
(
2008
).
Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes
.
Biochemistry
47
,
1474
-
1481
.
Hackmann
,
Y.
,
Graham
,
S. C.
,
Ehl
,
S.
,
Honing
,
S.
,
Lehmberg
,
K.
,
Arico
,
M.
,
Owen
,
D. J.
and
Griffiths
,
G. M.
(
2013
).
Syntaxin binding mechanism and disease-causing mutations in Munc18-2
.
Proc. Natl. Acad. Sci. USA
110
,
E4482
-
E4491
.
Haddad
,
E. K.
,
Wu
,
X.
,
Hammer
,
J. A.
, III
and
Henkart
,
P. A.
(
2001
).
Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice
.
J. Cell Biol.
152
,
835
-
842
.
Halimani
,
M.
,
Pattu
,
V.
,
Marshall
,
M. R.
,
Chang
,
H. F.
,
Matti
,
U.
,
Jung
,
M.
,
Becherer
,
U.
,
Krause
,
E.
,
Hoth
,
M.
,
Schwarz
,
E. C.
, et al.
(
2014
).
Syntaxin11 serves as a t-SNARE for the fusion of lytic granules in human cytotoxic T lymphocytes
.
Eur. J. Immunol.
44
,
573
-
584
.
Han
,
G. A.
,
Malintan
,
N. T.
,
Saw
,
N. M. N.
,
Li
,
L.
,
Han
,
L.
,
Meunier
,
F. A.
,
Collins
,
B. M.
and
Sugita
,
S.
(
2011
).
Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane
.
Mol. Biol. Cell
22
,
4134
-
4149
.
Hellewell
,
A. L.
,
Foresti
,
O.
,
Gover
,
N.
,
Porter
,
M. Y.
and
Hewitt
,
E. W.
(
2014
).
Analysis of familial hemophagocytic lymphohistiocytosis type 4 (FHL-4) mutant proteins reveals that S-acylation is required for the function of syntaxin 11 in natural killer cells
.
PLoS ONE
9
,
e98900
.
Hermansky
,
F.
and
Pudlak
,
P.
(
1959
).
Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies
.
Blood
14
,
162
-
169
.
Higashi
,
O.
(
1954
).
Congenital gigantism of peroxidase granules; the first case ever reported of qualitative abnormity of peroxidase
.
Tohoku J. Exp. Med.
59
,
315
-
332
.
Hirata
,
T.
,
Furie
,
B. C.
and
Furie
,
B.
(
2002
).
P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin
.
J. Immunol.
169
,
4307
-
4313
.
Hogg
,
N.
,
Patzak
,
I.
and
Willenbrock
,
F.
(
2011
).
The insider's guide to leukocyte integrin signalling and function
.
Nat. Rev. Immunol.
11
,
416
-
426
.
Hume
,
A. N.
,
Collinson
,
L. M.
,
Rapak
,
A.
,
Gomes
,
A. Q.
,
Hopkins
,
C. R.
and
Seabra
,
M. C.
(
2001
).
Rab27a regulates the peripheral distribution of melanosomes in melanocytes
.
J. Cell Biol.
152
,
795
-
808
.
Iwashima
,
M.
,
Irving
,
B. A.
,
van Oers
,
N. S.
,
Chan
,
A. C.
and
Weiss
,
A.
(
1994
).
Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases
.
Science
263
,
1136
-
1139
.
Jenkins
,
M. R.
,
Rudd-Schmidt
,
J. A.
,
Lopez
,
J. A.
,
Ramsbottom
,
K. M.
,
Mannering
,
S. I.
,
Andrews
,
D. M.
,
Voskoboinik
,
I.
and
Trapani
,
J. A.
(
2015
).
Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time
.
J. Exp. Med.
212
,
307
-
317
.
Kägi
,
D.
,
Ledermann
,
B.
,
Bürki
,
K.
,
Seiler
,
P.
,
Odermatt
,
B.
,
Olsen
,
K. J.
,
Podack
,
E. R.
,
Zinkernagel
,
R. M.
and
Hengartner
,
H.
(
1994
).
Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice
.
Nature
369
,
31
-
37
.
Kuhn
,
J. R.
and
Poenie
,
M.
(
2002
).
Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing
.
Immunity
16
,
111
-
121
.
Kupfer
,
A.
and
Dennert
,
G.
(
1984
).
Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells
.
J. Immunol.
133
,
2762
-
2766
.
Kupfer
,
A.
,
Dennert
,
G.
and
Singer
,
S. J.
(
1983
).
Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets
.
Proc. Natl. Acad. Sci. USA
80
,
7224
-
7228
.
Kupfer
,
A.
,
Dennert
,
G.
and
Singer
,
S. J.
(
1985
).
The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells
.
J. Mol. Cell Immunol.
2
,
37
-
49
.
Liu
,
B.
,
Chen
,
W.
,
Evavold
,
B. D.
and
Zhu
,
C.
(
2014
).
Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling
.
Cell
157
,
357
-
368
.
Marshall
,
B. T.
,
Long
,
M.
,
Piper
,
J. W.
,
Yago
,
T.
,
McEver
,
R. P.
and
Zhu
,
C.
(
2003
).
Direct observation of catch bonds involving cell-adhesion molecules
.
Nature
423
,
190
-
193
.
Martin-Verdeaux
,
S.
,
Pombo
,
I.
,
Iannascoli
,
B.
,
Roa
,
M.
,
Varin-Blank
,
N.
,
Rivera
,
J.
and
Blank
,
U.
(
2003
).
Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis
.
J. Cell Sci.
116
,
325
-
334
.
Ménasché
,
G.
,
Pastural
,
E.
,
Feldmann
,
J.
,
Certain
,
S.
,
Ersoy
,
F.
,
Dupuis
,
S.
,
Wulffraat
,
N.
,
Bianchi
,
D.
,
Fischer
,
A.
,
Le Deist
,
F.
, et al.
(
2000
).
Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome
.
Nat. Genet.
25
,
173
-
176
.
Monks
,
C. R.
,
Freiberg
,
B. A.
,
Kupfer
,
H.
,
Sciaky
,
N.
and
Kupfer
,
A.
(
1998
).
Three-dimensional segregation of supramolecular activation clusters in T cells
.
Nature
395
,
82
-
86
.
Nagle
,
D. L.
,
Karim
,
M. A.
,
Woolf
,
E. A.
,
Holmgren
,
L.
,
Bork
,
P.
,
Misumi
,
D. J.
,
McGrail
,
S. H.
,
Dussault
,
B. J.
, Jr.
,
Perou
,
C. M.
,
Boissy
,
R. E.
, et al.
(
1996
).
Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome
.
Nat. Genet.
14
,
307
-
311
.
Navarro
,
M. N.
and
Cantrell
,
D. A.
(
2014
).
Serine-threonine kinases in TCR signaling
.
Nat. Immunol.
15
,
808
-
814
.
Navarro
,
M. N.
,
Feijoo-Carnero
,
C.
,
Arandilla
,
A. G.
,
Trost
,
M.
and
Cantrell
,
D. A.
(
2014a
).
Protein kinase D2 is a digital amplifier of T cell receptor-stimulated diacylglycerol signaling in naive CD8(+) T cells
.
Sci. Signal.
7
,
ra99
.
Navarro
,
M. N.
,
Goebel
,
J.
,
Hukelmann
,
J. L.
and
Cantrell
,
D. A.
(
2014b
).
Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks
.
Mol. Cell. Proteomics
13
,
3544
-
3557
.
Neeft
,
M.
,
Wieffer
,
M.
,
de Jong
,
A. S.
,
Negroiu
,
G.
,
Metz
,
C. H. G.
,
van Loon
,
A.
,
Griffith
,
J.
,
Krijgsveld
,
J.
,
Wulffraat
,
N.
,
Koch
,
H.
, et al.
(
2005
).
Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells
.
Mol. Biol. Cell
16
,
731
-
741
.
Niedergang
,
F.
,
Di Bartolo
,
V.
and
Alcover
,
A.
(
2016
).
Comparative Anatomy of Phagocytic and Immunological Synapses
.
Front. Immunol.
7
,
18
.
Ohadi
,
M.
,
Lalloz
,
M. R. A.
,
Sham
,
P.
,
Zhao
,
J.
,
Dearlove
,
A. M.
,
Shiach
,
C.
,
Kinsey
,
S.
,
Rhodes
,
M.
and
Layton
,
D. M.
(
1999
).
Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping
.
Am. J. Hum. Genet.
64
,
165
-
171
.
Paz
,
P. E.
,
Wang
,
S.
,
Clarke
,
H.
,
Lu
,
X.
,
Stokoe
,
D.
and
Abo
,
A.
(
2001
).
Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells
.
Biochem. J.
356
,
461
-
471
.
Perou
,
C. M.
,
Moore
,
K. J.
,
Nagle
,
D. L.
,
Misumi
,
D. J.
,
Woolf
,
E. A.
,
McGrail
,
S. H.
,
Holmgren
,
L.
,
Brody
,
T. H.
,
Dussault
,
B. J.
, Jr.
,
Monroe
,
C. A.
, et al.
(
1996
).
Identification of the murine beige gene by YAC complementation and positional cloning
.
Nat. Genet.
13
,
303
-
308
.
Potter
,
T. A.
,
Grebe
,
K.
,
Freiberg
,
B.
and
Kupfer
,
A.
(
2001
).
Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells
.
Proc. Natl. Acad. Sci. USA
98
,
12624
-
12629
.
Prosser
,
S. L.
and
Morrison
,
C. G.
(
2015
).
Centrin2 regulates CP110 removal in primary cilium formation
.
J. Cell Biol.
208
,
693
-
701
.
Purbhoo
,
M. A.
(
2013
).
The function of sub-synaptic vesicles during T-cell activation
.
Immunol. Rev.
251
,
36
-
48
.
Quann
,
E. J.
,
Liu
,
X.
,
Altan-Bonnet
,
G.
and
Huse
,
M.
(
2011
).
A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells
.
Nat. Immunol.
12
,
647
-
654
.
Reefman
,
E.
,
Kay
,
J. G.
,
Wood
,
S. M.
,
Offenhauser
,
C.
,
Brown
,
D. L.
,
Roy
,
S.
,
Stanley
,
A. C.
,
Low
,
P. C.
,
Manderson
,
A. P.
and
Stow
,
J. L.
(
2010
).
Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells
.
J. Immunol.
184
,
4852
-
4862
.
Ritter
,
A. T.
,
Asano
,
Y.
,
Stinchcombe
,
J. C.
,
Dieckmann
,
N. M. G.
,
Chen
,
B.-C.
,
Gawden-Bone
,
C.
,
van Engelenburg
,
S.
,
Legant
,
W.
,
Gao
,
L.
,
Davidson
,
M. W.
, et al.
(
2015
).
Actin depletion initiates events leading to granule secretion at the immunological synapse
.
Immunity
42
,
864
-
876
.
Rowe
,
J.
,
Calegari
,
F.
,
Taverna
,
E.
,
Longhi
,
R.
and
Rosa
,
P.
(
2001
).
Syntaxin 1A is delivered to the apical and basolateral domains of epithelial cells: the role of munc-18 proteins
.
J. Cell Sci.
114
,
3323
-
3332
.
Sepulveda
,
F. E.
,
Burgess
,
A.
,
Heiligenstein
,
X.
,
Goudin
,
N.
,
Ménager
,
M. M.
,
Romao
,
M.
,
Côte
,
M.
,
Mahlaoui
,
N.
,
Fischer
,
A.
,
Raposo
,
G.
, et al.
(
2015
).
LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function
.
Traffic
16
,
191
-
203
.
Shirakawa
,
R.
,
Higashi
,
T.
,
Tabuchi
,
A.
,
Yoshioka
,
A.
,
Nishioka
,
H.
,
Fukuda
,
M.
,
Kita
,
T.
and
Horiuchi
,
H.
(
2004
).
Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets
.
J. Biol. Chem.
279
,
10730
-
10737
.
Sieni
,
E.
,
Cetica
,
V.
,
Hackmann
,
Y.
,
Coniglio
,
M. L.
,
Da Ros
,
M.
,
Ciambotti
,
B.
,
Pende
,
D.
,
Griffiths
,
G.
and
Aricò
,
M.
(
2014
).
Familial hemophagocytic lymphohistiocytosis: when rare diseases shed light on immune system functioning
.
Front. Immunol.
5
,
167
.
Soares
,
H.
,
Lasserre
,
R.
and
Alcover
,
A.
(
2013
).
Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses
.
Immunol. Rev.
256
,
118
-
132
.
Stepp
,
S. E.
,
Dufourcq-Lagelouse
,
R.
,
Le Deist
,
F.
,
Bhawan
,
S.
,
Certain
,
S.
,
Mathew
,
P. A.
,
Henter
,
J.-I.
,
Bennett
,
M.
,
Fischer
,
A.
,
de Saint Basile
,
G.
, et al.
(
1999
).
Perforin gene defects in familial hemophagocytic lymphohistiocytosis
.
Science
286
,
1957
-
1959
.
Stinchcombe
,
J. C.
,
Barral
,
D. C.
,
Mules
,
E. H.
,
Booth
,
S.
,
Hume
,
A. N.
,
Machesky
,
L. M.
,
Seabra
,
M. C.
and
Griffiths
,
G. M.
(
2001a
).
Rab27a is required for regulated secretion in cytotoxic T lymphocytes
.
J. Cell Biol.
152
,
825
-
834
.
Stinchcombe
,
J. C.
,
Bossi
,
G.
,
Booth
,
S.
and
Griffiths
,
G. M.
(
2001b
).
The immunological synapse of CTL contains a secretory domain and membrane bridges
.
Immunity
15
,
751
-
761
.
Stinchcombe
,
J. C.
,
Majorovits
,
E.
,
Bossi
,
G.
,
Fuller
,
S.
and
Griffiths
,
G. M.
(
2006
).
Centrosome polarization delivers secretory granules to the immunological synapse
.
Nature
443
,
462
-
465
.
Stinchcombe
,
J. C.
,
Randzavola
,
L. O.
,
Angus
,
K. L.
,
Mantell
,
J. M.
,
Verkade
,
P.
and
Griffiths
,
G. M.
(
2015
).
Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis
.
Curr. Biol.
25
,
3239
-
3244
.
Tangye
,
S. G.
(
2014
).
XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP
.
J. Clin. Immunol.
34
,
772
-
779
.
Tanos
,
B. E.
,
Yang
,
H.-J.
,
Soni
,
R.
,
Wang
,
W.-J.
,
Macaluso
,
F. P.
,
Asara
,
J. M.
and
Tsou
,
M.-F. B.
(
2013
).
Centriole distal appendages promote membrane docking, leading to cilia initiation
.
Genes Dev.
27
,
163
-
168
.
Tschopp
,
J.
and
Nabholz
,
M.
(
1990
).
Perforin-mediated target cell lysis by cytolytic T lymphocytes
.
Annu. Rev. Immunol.
8
,
279
-
302
.
Ueda
,
H.
,
Morphew
,
M. K.
,
McIntosh
,
J. R.
and
Davis
,
M. M.
(
2011
).
CD4+ T-cell synapses involve multiple distinct stages
.
Proc. Natl. Acad. Sci. USA
108
,
17099
-
17104
.
Vivar
,
O. I.
,
Masi
,
G.
,
Carpier
,
J.-M.
,
Magalhaes
,
J. G.
,
Galgano
,
D.
,
Pazour
,
G. J.
,
Amigorena
,
S.
,
Hivroz
,
C.
and
Baldari
,
C. T.
(
2016
).
IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo
.
Proc. Natl. Acad. Sci. USA
113
,
386
-
391
.
Wheatley
,
D. N.
(
1995
).
Primary cilia in normal and pathological tissues
.
Pathobiology
63
,
222
-
238
.
Wu
,
X.
,
Rao
,
K.
,
Bowers
,
M. B.
,
Copeland
,
N. G.
,
Jenkins
,
N. A.
and
Hammer
,
J. A.
 III
(
2001
).
Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle
.
J. Cell Sci.
114
,
1091
-
1100
.
Yablonski
,
D.
,
Kuhne
,
M. R.
,
Kadlecek
,
T.
and
Weiss
,
A.
(
1998
).
Uncoupling of nonreceptor tyrosine kinases from PLC-gamma1 in an SLP-76-deficient T cell
.
Science
281
,
413
-
416
.
Yi
,
J.
,
Wu
,
X.
,
Chung
,
A. H.
,
Chen
,
J. K.
,
Kapoor
,
T. M.
and
Hammer
,
J. A.
(
2013
).
Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage
.
J. Cell Biol.
202
,
779
-
792
.
zur Stadt
,
U.
,
Schmidt
,
S.
,
Kasper
,
B.
,
Beutel
,
K.
,
Diler
,
A. S.
,
Henter
,
J.-I.
,
Kabisch
,
H.
,
Schneppenheim
,
R.
,
Nurnberg
,
P.
,
Janka
,
G.
, et al.
(
2005
).
Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11
.
Hum. Mol. Genet.
14
,
827
-
834
.
zur Stadt
,
U.
,
Rohr
,
J.
,
Seifert
,
W.
,
Koch
,
F.
,
Grieve
,
S.
,
Pagel
,
J.
,
Strauss
,
J.
,
Kasper
,
B.
,
Nurnberg
,
G.
,
Becker
,
C.
, et al.
(
2009
).
Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11
.
Am. J. Hum. Genet.
85
,
482
-
492
.

Competing interests

The authors declare no competing or financial interests.