Differentiation of embryonic stem cells (ESCs) into definitive endoderm requires signalling by both growth factors – such as activin A and Wnt3a – and extracellular matrix (ECM) components – such as fibronectin (FN) and laminin. Although ESCs do both, exerting traction forces and responding to the mechanical properties of the ECM, little is currently known about how soluble factors induce biochemical and physical changes in the ESCs and their associated matrix, when added to differentiate ESCs. Here (p. 1961), Adam Engler and colleagues used a force-sensitive FN matrix assay in mouse ESCs to understand the crosstalk between mechanical factors and chemical signals in ESCs and the ECM in directing developmental cues. Addition of the myosin inhibitor blebbistatin inhibited ESC differentiation, indicating that traction forces are necessary for the formation of definitive endoderm. This effect is possibly exerted through TGF-β signalling because this treatment transiently prevented the nuclear translocation of the TGF-β effector phosphorylated SMAD2. The authors then showed that extracellular laminin-111 regulated differentiation; its binding to α3β1-integrin inhibited the SMAD2 inhibitor SMAD7 and also decreased FN-induced matrix strain that acts through α5β1-integrin. Taken together, this study shows that soluble factors that induce ESC differentiation activate traction forces, which – in turn – utilise integrins and ECM remodelling to feedback and support growth-factor-activated signalling cascades.
Role of traction force in definitive endoderm specification Free
Role of traction force in definitive endoderm specification. J Cell Sci 15 May 2015; 128 (10): e1005. doi:
Download citation file:
Advertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.