Obtaining energy from the environment is fundamental to all forms of life, but only photosynthetic organisms are able to directly capture sunlight and convert it into biological energy as ATP, e.g. through light-absorbing chlorophyll molecules of plant chloroplasts. With their diet, animals take up chlorophyll, which is then converted into different metabolites that retain the ability to absorb light at wavelengths that can penetrate into animal tissues. But what are the consequences of light absorption by these metabolites? In this study (p.388), Ilyas Washington and colleagues address this question by assessing the function of chlorophyll metabolites in Caenorhabditis elegans and in mice. They find that addition of the light-capturing chlorophyll metabolite pyropheophorbide-a (P-a) to the animal diet leads to it entering the circulation and becoming enriched in mitochondria; there, it results in higher concentration of ATP when the animals are exposed to light. The authors also show that P-a extends the life span of C. elegans that are exposed to light. With regard to the molecular mechanism, the biochemical experiments performed here suggest that P-a modulates the mitochondrial ATP stores by catalysing the reduction of coenzyme Q – a slow step in ATP synthesis. Taken together, the data presented here suggest that, similarly to plants and photosynthetic organisms, animals also possess metabolic pathways to derive energy directly from sunlight.
Chlorophyll-mediated energy capture in animal mitochondria
Chlorophyll-mediated energy capture in animal mitochondria. J Cell Sci 15 January 2014; 127 (2): e0204. doi:
Download citation file:
Advertisement
Cited by
Call for papers: Cell Biology of Mitochondria
We are welcoming submissions for our upcoming special issue: Cell Biology of Mitochondria. This issue will be coordinated by two Guest Editors: Ana J. Garcia-Saez (University of Cologne, Germany) and Heidi McBride (McGill University, Canada). Submission deadline: 1 October 2024.
Focal adhesion kinase signalling – tumour vulnerabilities and clinical opportunities
In this Review, David Schlaepfer and colleagues summarise 30 years of focal adhesion kinase (FAK) research with a view of the ongoing clinical testing of small-molecule FAK inhibitors. The authors touch on how FAK plays an important signal integration role and ultimately functions to guide cellular behaviour. Additionally, the authors discuss how FAK inhibition might present a powerful tool to influence the physiological response to other therapeutic approaches.
JCS-FocalPlane Training Grants
Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2024 applications: 7 September (decision by week commencing 8 October 2024); 22 November (decision by week commencing 16 December).
Biologists @ 100 - join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register your interest to join us in March 2025 in Liverpool, UK.
Interview with Journal of Cell Science Editor Rob Parton
Read our interview with Rob Parton, a Cell Scientist to Watch, about his career journey leading him from the UK to the University of Queensland in Brisbane, Australia, the evolution of the membrane trafficking field and his advice for running a highly collaborative lab. As a Journal of Cell Science Editor, Rob brings to the journal his expertise in multiscale analysis of membrane function, membrane microdomains, lipid droplets and advanced microscopy techniques in cell biology.