Summary

Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called “lysosomal cell death”. This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.

Introduction

The concept of lysosomal cell death (LCD) was first presented by Christian de Duve, who was awarded the Nobel Prize in 1974 for his discovery and characterization of lysosomes as cellular ‘recycling bins’. Owing to the potent hydrolytic capacity of lysosomal enzymes, he also defined lysosomes as ‘suicide bags’ that can cause cell and tissue autolysis upon rupture (de Duve, 1983). Even though lysosomal rupture was recognized back in the 1970s as a powerful way to kill cells (Firestone et al., 1979), the interest in LCD faded during the following decades. This was largely due to the lack of methods to differentiate lysosomal rupture that causes cell death from post-death alterations in autolytic cells. Furthermore, lysosomal involvement in cell death was commonly overlooked because lysosomal membrane permeabilization (LMP) does not necessarily change the ultrastructure of lysosomes (Brunk and Ericsson, 1972) and because the ability of methyl-ketone-based protease inhibitors (e.g. zVAD-fmk) to inhibit cell death was generally considered as proof for caspase-mediated apoptotic cell death, even though such compounds also inhibit lysosomal cysteine cathepsins (Schotte et al., 1999). Thus, the interest in LCD was revived only recently when more advanced assays to study LMP were developed and emerging genetic data corroborated the role of cathepsins as evolutionarily conserved executors of cell death (Tables 1 and 2). This article and the accompanying poster briefly summarize the molecular mechanisms of LCD.

Table 1.
Examples of genetically confirmed cellular models for lysosomal cell death
graphic
graphic

Cell types: HeLa, human cervix carcinoma; Huh-7, human hepatocellular carcinoma; KMCH-shMcl, Mcl-1-depleted human KMCH cholangiocarcinoma; MEF, murine embryonic fibroblast; ME-180as, Hsp70-depleted ME-180 human cervix carcinoma; NCH82, human glioma; U937, human histiocytic lymphoma; WEHI-S, TNF-sensitive subclone of WEHI-164 murine fibrosarcoma.

Genes: ATP6V0C, human ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c; CSTA, human cystatin A; Ctsb/CTSB, murine/human cathepsin B; Ctsd/CTSD, murine/human cathepsin D; Ctsl/CTSL, murine/human cathepsin L; Rela, v-rel reticuloendotheliosis viral oncogene homolog A (avian); Spi2A, murine serine protease inhibitor 2A (serine (or cysteine) peptidase inhibitor, clade A, member 3G, Serpina3g); VMA3, S. cerevisiae V-type ATPase V0 subunit c.

Abbreviations: LMP, lysosomal membrane permeabilization; n.d., not determined; Leu-Leu-OMe, L-leucyl-L-leucine methyl ester.

Table 2.
Examples of in vivo models of lysosomal cell death
graphic
graphic

Abbreviations: Ad5IκB, adenovirus expressing IκB (Nfkbia) superrepressor S32A/S36A mutant; CA-074Me and E64d, cysteine cathepsin inhibitors; IRI, ischemia-reperfusion injury; LPS, lipopolysaccharide; pepstatin A, cathepsin D inhibitor; R3032, cathepsin B inhibitor; zFA-fmk, cysteine cathepsin inhibitor.

Genes: asp-1/3/4, C. elegans cathepsin D/E-like; Cp1, D. melanogaster cathepsin L-like; Cstb, murine cystatin B; Ctsb, murine cathepsin B; Ctsd, murine cathepsin D; Cys, D. melanogaster cystatin-like; norpA, D. melanogaster phospholipase C; Spn4, D. melanogaster serpin 4 (protease inhibitor); srp-6, C. elegans serpin 6; Stat3, murine signal transducer and activator of transcription 3.

Induction of LMP

Most, if not all, cell death pathways eventually lead to LMP (Vanden Berghe et al., 2010). To define LCD, it is thus important to differentiate between LMP that is required for cell death and LMP that is a consequence of it. Tables 1 and 2 list experimental systems in which the role of lysosomes in causing cell death has been confirmed. Additionally, numerous other stimuli, including most known inducers of apoptosis, can trigger LMP that either initiates or amplifies the cell death program (Groth-Pedersen and Jaattela, 2010; Johansson et al., 2010). Except for lysosomotropic detergents (detergents that accumulate in lysosomes) and pore-forming toxins, the mechanisms underlying LMP are largely ambiguous, possibly reflecting multiple means to permeabilize the lysosomal membrane, as discussed below.

Lysosomotropic detergents

Lysosomotropic detergents damage the lysosomal membrane owing to their detergent-like properties (de Duve et al., 1974; Firestone et al., 1979). They are weak bases that diffuse across membranes and become trapped in the acidic lysosomes after protonation (de Duve et al., 1974). Examples of lysosomotropic detergents include amines with hydrophobic side-chains (e.g. imidazole and morpholine) (Firestone et al., 1979), ciprofloxacin (Boya et al., 2003), o-methyl-serine dodecylamide hydrochloride (Li et al., 2000), sphingosine (Kågedal et al., 2001) and siramesine (Ostenfeld et al., 2008), all of which are potent inducers of LMP. Although most lysosomotropic detergents are likely to be cytotoxic to all lysosome-bearing cells (Firestone et al., 1979), the transformation-associated sensitization to some of them (e.g. siramesine) opens possibilities for their use in cancer therapy (Ostenfeld et al., 2005). In addition, l-leucyl-l-leucine methyl ester (Leu-Leu-OMe) is under development for the treatment of graft-versus-host disease owing to its pronounced effect on cytotoxic lymphocytes. The increased sensitivity of these cells depends on their high level of cathepsin C, which is required to convert Leu-Leu-OMe into the detergent (Leu-Leu)n-OMe (n>3) after its delivery to the lysosomes by receptor-mediated endocytosis (Uchimoto et al., 1999).

Viral proteins

Virus infection requires the delivery of viral genes into the cell, which mostly occurs by penetrating the endolysosomal membranes with viral entry proteins that become active in the acidic environment (Lozach et al., 2011; Vázquez-Calvo et al., 2012). The penetration of non-enveloped viruses is typically achieved by endolysosomal membrane rupture (e.g. adenovirus and rhinovirus HRV14) or pore formation (e.g. rhinovirus HRV2 and poliovirus) (Prchla et al., 1995), which also releases lysosomal content into the cytosol. Adenovirus membrane lytic protein VI ruptures the membrane by causing membrane curvature stress (Maier et al., 2010; Wiethoff et al., 2005), but membrane rupture can also be caused by vesicular swelling beyond the retaining capacity of the membrane. Alternatively, viral capsid proteins of HRV2 and poliovirus insert directly into the endolysosomal membrane and form size-selective pores (Fuchs and Blaas, 2010; Tosteson and Chow, 1997). By contrast, parvovirus H-1 induces lethal LMP in glioma cells that is not directly related to the viral entry process but instead results from a dramatic downregulation of cytosolic cysteine cathepsin inhibitors, which sensitizes the cells to otherwise non-lethal cathepsin release (Di Piazza et al., 2007).

The entry of enveloped viruses has not been associated with LMP, possibly owing to the ability of the viral envelope to seal the endolysosomal membrane. Nevertheless, proteins of these viruses that are not involved in the entry process can induce lethal LMP. HIV-1 Nef causes LMP when expressed in high amounts in the cytosol, which might contribute to the massive destruction of CD4-positive T cells upon HIV-1 infection (Laforge et al., 2007). In addition, viral cationic peptides (e.g. HIV-1 Tat peptide), which, upon protonation in the acidic environment, acquire detergent-like properties, might damage lysosomes (Meade and Dowdy, 2007; Ziegler et al., 2005).

Bacterial, fungal and snake toxins

In a manner similar to viral entry proteins, many bacterial toxins form pores after undergoing conformational changes at low pH (Kagan et al., 1981; Sandvig and van Deurs, 2005). Accordingly, many of them strongly induce LCD, including Bacillus anthracis toxin (Newman et al., 2009), Streptomyces hygroscopicus nigericin (Hentze et al., 2003), Pseudomonas aeruginosa pyocyanin (Prince et al., 2008) and Aggregatibacter actinomycetemcomitans leukotoxin (DiFranco et al., 2012). Similarly, the cytotoxicity of enniatin mycotoxins (Ivanova et al., 2012), and venom toxins from cobra (Feofanov et al., 2005) and South American rattlesnake (Hayashi et al., 2008), have been connected with LMP. Additionally, Vibrio parahaemolyticus VepA was recently identified as a new type of LMP-inducing protein (Matsuda et al., 2012). After inoculation, VepA binds to the cytoplasmic tail of the channel-forming subunit c of vacuolar H+-ATPase and triggers leakage of lysosomal hydrolases into the cytosol in a manner that depends on the subunit c. It will be of great interest to investigate whether VepA causes the widening of the ATPase channel and whether other LMP-inducing stimuli utilize a similar mechanism.

Reactive oxygen species

Reactive oxygen species (ROS) contribute to LMP that is induced by a wide range of oxidative stimuli (e.g. drugs, heavy metals and ionizing radiation) and conditions (e.g. ischemia–reperfusion injury, inflammation and neurodegenerative disorders) (Kurz et al., 2008a). Upon oxidative stress, excess H2O2 diffuses into lysosomes, where it reacts with redox-active iron, resulting in the production of hydroxyl radicals in Fenton-type reactions (see Poster) (Kurz et al., 2008b). Hydroxyl radicals are highly reactive and can destabilize the lysosomal membrane by causing lipid peroxidation and damaging lysosomal membrane proteins. Additionally, ROS might contribute to LMP by activating lysosomal Ca2+ channels (Sumoza-Toledo and Penner, 2011) or altering the activity of lysosomal enzymes such as phospholipase A2 (PLA2). In concordance with the lysosome-destabilizing effect of ROS, various antioxidants and redox regulators as well as iron-binding proteins confer protection against oxidative-stress-induced LMP (Kurz et al., 2008a; Kurz et al., 2008b).

Proteases

Cathepsins are mainly considered to be downstream mediators of LCD, but they can apparently also initiate LMP. Supporting this hypothesis, lack of cathepsin B prevents LMP in hepatocytes treated with tumor necrosis factor (TNF) or sphingosine (Werneburg et al., 2002). Furthermore, sensitization to LMP upon oncogene-driven transformation and several models of LCD (e.g. mammary gland involution and death induced by cytoskeletal disruption) are associated with increased cysteine cathepsin activity (Fehrenbacher et al., 2008; Fehrenbacher et al., 2004; Kreuzaler et al., 2011; Groth-Pedersen et al., 2007; Groth-Pedersen et al., 2012). The LMP-promoting effect of cysteine cathepsins might be due to the intralysosomal degradation of highly glycosylated lysosome-associated membrane proteins, which form a protective glycocalyx shield on the inner lysosomal membrane (Eskelinen et al., 2003; Fehrenbacher et al., 2008). Alternatively, minor leakage of cathepsins could activate LMP by cleaving sphingosine kinase 1 or other cytosolic substrates that maintain lysosomal stability (Mora et al., 2010; Taha et al., 2005).

Other proteases can also cause LMP. Cytosolic calpain proteases contribute to LMP upon ischemic and hypochlorous-acid-induced injury of neurons (Windelborn and Lipton, 2008; Yamashima et al., 1998; Yap et al., 2006). After deprivation of oxygen and glucose, μ-calpain localizes to lysosomes in hippocampal slices, suggesting a direct effect on the lysosomal membrane (Yamashima et al., 1996). Interestingly, heat shock protein 70 (Hsp70), which stabilizes lysosomes, has been proposed to be a target of calpain in this context (Yamashima, 2012).

Finally, the activation of apoptotic caspases is frequently associated with secondary LMP that might speed up or amplify the death process. Often, such secondary LMP is initiated by caspase-9, which can be activated in the apoptososome or, in murine cells, by caspase-8-dependent cleavage (Gyrd-Hansen et al., 2006; Oberle et al., 2010). Furthermore, caspase-2 has been reported to cause LMP and subsequent activation of other caspases in tunicamycin-treated leukemia cells (Huang et al., 2009). The caspase targets that are responsible for LMP remain mostly speculative (Oberle et al., 2010). After TNF receptor internalization, cathepsin D release can result from a caspase-8 and -7-dependent cascade that activates acid sphingomyelinase (ASM&semi see below) see below) (Edelmann et al., 2011; Tchikov et al., 2011). Additionally, TNF-induced LMP in hepatocytes has been reported to be partially inhibited in the absence of the caspase-8 target Bid (Guicciardi et al., 2005; Werneburg et al., 2004), a BH3-only protein, whose truncated form (tBid) is essential for TNF-induced activation of pore-forming Bcl-2 proteins (Bax and Bak) and subsequent mitochondrial outer membrane permeabilization (MOMP) (Happo et al., 2012). It is unclear, however, whether tBid initiates LMP directly or whether it promotes LMP by means of MOMP (Happo et al., 2012).

Lipids and their metabolites

The sphingolipid metabolite sphingosine may act as an endogenous lysosomotropic detergent following treatments that induce its accumulation – for example, through the activation of lysosomal ASM and acid ceramidase in TNF-treated rat hepatocytes (Ullio et al., 2012). ASM might also enhance the LCD pathway through ceramide-mediated activation and release of cathepsin D (Heinrich et al., 2004; Heinrich et al., 1999). By contrast, ASM activity protects cells against photooxidation-induced LMP, and this might explain the potent lysosome-stabilizing effect of Hsp70, which enhances ASM activity by promoting its binding to lysosomal membranes (Kirkegaard et al., 2010; Nylandsted et al., 2004). Notably, LMP is also triggered by inhibition of sphingosine kinase 1, which converts sphingosine to sphingosine-1-phosphate (S1P) (Mora et al., 2010). In this case, however, loss of S1P, rather than accumulation of sphingosine, damages the lysosomes by hindering lysosomal recycling. Interestingly, sphingosine kinase 1 is a cathepsin B substrate (Taha et al., 2005), whose degradation might contribute to the amplification of LMP. Overall, lysosomal sphingomyelin catabolism controls lysosomal stability by multiple means, with the excess of either sphingomyelin or sphingosine having a destabilizing effect and S1P preserving normal lysosomal function.

LMP can also be caused by phospholipase A2 (PLA2), which has been shown to destabilize purified lysosomes (Zhao et al., 2003). Based on studies with semi-selective pharmacological PLA2 inhibitors, cytosolic PLA2 has been implicated in LCD induced by low concentrations of H2O2 (Zhao et al., 2001), neuronal ischemia (Windelborn and Lipton, 2008) and TNF (Wissing et al., 1997), whereas secretory PLA2 has been associated with LCD induced by heavy metals and environmental pollutants (Marchi et al., 2004). These effects might be mediated by arachidonic acid, a lipid metabolite generated by PLA2, which displays detergent-like properties and increases lysosomal permeability to K+ and H+, thereby enhancing lysosomal osmotic sensitivity (Zhang et al., 2006). Thus, PLA2 activity could contribute to LMP in several ways, but more research is required to clarify how different PLA2 enzymes promote LMP.

Loss of cholesterol might also increase lysosomal permeability to K+ and H+ and thereby destabilize the lysosomes (Johansson et al., 2010), but this effect is still poorly understood.

p53

Even though LMP can occur in the absence of cellular tumor antigen p53 (Erdal et al., 2005; Nylandsted et al., 2000; Ostenfeld et al., 2005), emerging evidence supports the notion that p53 can trigger LMP. For example, in myeloid leukemia cells, the activation of temperature-sensitive p53 is sufficient to cause LMP that precedes MOMP (Yuan et al., 2002). Furthermore, early LMP in TNF-treated fibrosarcoma cells (Li et al., 2007), embelin-treated colon cancer cells (Joy et al., 2010), as well as in cortical neurons exposed to Δ9-tetrahydrocannabinol or β-amyloid (Fogarty et al., 2010; Gowran and Campbell, 2008) depends on p53 and is associated with the localization of phospho-Ser15-p53 to the lysosomal membrane. The recruitment of phospho-Ser15-p53 to the lysosomes depends on LAPF (LMP-inducing lysosome-associated apoptosis-inducing protein containing PH and FYVE domains) (Li et al., 2007). It will be of great interest to reveal the mechanism of action of these proteins and to investigate whether p53 and/or LAPF link other cellular signals to LMP.

Proapoptotic Bcl-2 family members

Proapoptotic Bcl-2 family members are not essential for the induction of LMP, as demonstrated by the failure of Bcl-2 overexpression or Bax–Bak double-deficiency to prevent LMP after various stimuli (Boya et al., 2003; Gonzalez et al., 2012; Gyrd-Hansen et al., 2006; Nylandsted et al., 2000; Ostenfeld et al., 2005; Rammer et al., 2010). They might, however, contribute to LMP in some model systems, as discussed above for the role of tBid in TNF-treated hepatocytes. Besides, it has been suggested that Bim recruits activated Bax to the lysosomes and thereby promotes LMP in hepatocytes treated with TRAIL (TNF-related apoptosis-inducing factor) (Werneburg et al., 2012; Werneburg et al., 2007). Even though Bax can form pores in isolated lysosomes in vitro (Kågedal et al., 2005), its lysosomal localization and direct involvement in LMP remains, however, controversial (Oberle et al., 2010; Repnik et al., 2012). Moreover, a recent report has revealed an unexpected role for Bim in lysosomal acidification (Ruppert et al., 2012), which might indirectly contribute to LMP.

Other regulators

The disruption of cytoskeleton and cellular trafficking by microtubule-targeting drugs (Bröker et al., 2004; Groth-Pedersen et al., 2007) or by depletion of cytoskeleton-associated motor proteins (Groth-Pedersen et al., 2012) also induces LMP. However, the underlying mechanisms are poorly understood. In addition, many other molecules regulate LMP, as reviewed elsewhere (Boya and Kroemer, 2008; Kirkegaard and Jäättelä, 2009; Kroemer and Jäättelä, 2005; Repnik et al., 2012).

Overall, a large number of stimuli and mediators have been implicated in LMP, but future work is likely to connect many of them to a lesser number of signalling pathways that converge on even fewer mechanisms actually causing LMP.

Consequences of LMP

It is unclear whether the entire lysosomal population is equally prone to LMP or whether a subpopulation of lysosomes is specifically targeted by LMP-inducing stimuli. It is, however, clear that the extent of LMP determines the morphological features of cell death. Extensive LMP results in uncontrolled necrosis with rapid plasma membrane permeabilization, whereas limited LMP can activate the intrinsic apoptosis pathway in apoptosis-competent cells (Kågedal et al., 2001) or caspase-independent death with apoptosis-like morphology in cells with defective apoptosis (Kirkegaard and Jäättelä, 2009).

In the case of extensive LMP, most lysosomal content leaks into the cytosol, and specific inhibitors of lysosomal hydrolases fail to attenuate cell death. By contrast, inhibition of cathepsins – especially cysteine cathepsins B and L and aspartyl cathepsin D – by genetic or pharmacological targeting or by overexpression of cytosolic cathepsin inhibitors (e.g. cystatin A or serine protease inhibitor 2A) can confer significant protection against cell death following limited LMP (Tables 1 and 2). The role of cathepsins as executors of LMP-induced apoptosis and apoptosis-like cell death is further supported by the ability of microinjected cathepsin B or D to trigger MOMP and apoptosis (Bivik et al., 2006; Roberg et al., 2002) as well as the capability of cathepsin B to induce apoptotic morphology in isolated nuclei (Vancompernolle et al., 1998).

LMP-induced apoptosis is usually activated through MOMP, which can be brought about by cathepsin-mediated activating cleavage of pro-apoptotic (Bid) or inhibiting cleavage of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-XL and Mcl-1) (Appelqvist et al., 2012; Cirman et al., 2004; Droga-Mazovec et al., 2008). Furthermore, cytosolic cathepsins can activate apoptotic caspases by cleaving either them or their inhibitor E3 ubiquitin-protein ligase XIAP (Conus et al., 2008; Droga-Mazovec et al., 2008; Vancompernolle et al., 1998; Zhou and Salvesen, 1997). The activated caspases can then enhance either MOMP-dependent or -independent apoptotic death.

Notably, LMP can also cause cell death with little or no caspase activation – for example, in response to hypochlorous acid (Yap et al., 2006), depletion of Hsp70 (Nylandsted et al., 2000), antibodies to CD3 (Michallet et al., 2004) or siramesine (Ostenfeld et al., 2005) – and, even when caspases are activated, their inhibition does not necessarily reduce cell death (Di Piazza et al., 2007; Nylandsted et al., 2004). Instead, cathepsins themselves can cleave many cellular proteins and take over the role of ‘death-executing proteases’ (Turk et al., 2012). So far, only a few cell death-promoting cathepsin substrates have been identified (Turk et al., 2012). As discussed above, sphingosine kinase 1 might be one of them. Additionally, cathepsins can cleave the caspase substrate PARP (Gobeil et al., 2001) and cell adhesion molecules such as membrane-associated guanylate kinases (MAGUKs), thereby inducing cellular detachment (Ivanova et al., 2011).

It should be emphasized that, even though cathepsins are important executors of LCD, their inhibition provides only partial protection from LCD. Thus, more studies are clearly needed to define the roles of other lysosomal hydrolases (e.g. lipases and phosphatases), lysosome-derived second messengers (e.g. Ca2+, H+ and ROS) and LMP-associated lysosomal dysfunction in LCD.

Perspectives

LCD has long been overlooked as a mode of regulated cell death. Nevertheless, its regulation and tight links to other cell death pathways are finally beginning to emerge. As discussed above and reviewed elsewhere (Boya and Kroemer, 2008; Česen et al., 2012; Kirkegaard and Jäättelä, 2009; Yamashima and Oikawa, 2009), LCD has important physiological functions, and it contributes to numerous degenerative and infectious diseases (see Poster). Nevertheless, it might provide an alternative strategy for the treatment of apoptosis- and multidrug-resistant cancers (Groth-Pedersen and Jaattela, 2010; Kallunki et al., 2012; Kreuzaler and Watson, 2012). However, a great amount of basic research is still needed to bring our knowledge of the complex regulation of lysosomal stability up to a level that allows the optimal design of LCD-targeting therapies.

Acknowledgements

We thank Jennifer Kricker, Monika Mortensen and Jesper Nylandsted for helpful comments and apologize to all authors whose work could not be cited owing to constraints regarding article length.

Funding

The authors are supported by the Danish Cancer Society, the Danish National Research Foundation, the Danish Council for Independent Research in Medical Sciences, the Childhood Cancer Foundation, the Association for International Cancer Research, the Novo Nordisk Foundation, the Lundbeck Foundation and the Swedish Research Council.

References

Appelqvist
H.
,
Johansson
A. C.
,
Linderoth
E.
,
Johansson
U.
,
Antonsson
B.
,
Steinfeld
R.
,
Kågedal
K.
,
Ollinger
K.
(
2012
).
Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183.
Ann. Clin. Lab. Sci.
42
,
231
242
.
Artal-Sanz
M.
,
Samara
C.
,
Syntichaki
P.
,
Tavernarakis
N.
(
2006
).
Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans.
J. Cell Biol.
173
,
231
239
.
Ben-Ari
Z.
,
Mor
E.
,
Azarov
D.
,
Sulkes
J.
,
Tor
R.
,
Cheporko
Y.
,
Hochhauser
E.
,
Pappo
O.
(
2005
).
Cathepsin B inactivation attenuates the apoptotic injury induced by ischemia/reperfusion of mouse liver.
Apoptosis
10
,
1261
1269
.
Bidère
N.
,
Lorenzo
H. K.
,
Carmona
S.
,
Laforge
M.
,
Harper
F.
,
Dumont
C.
,
Senik
A.
(
2003
).
Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis.
J. Biol. Chem.
278
,
31401
31411
.
Bivik
C. A.
,
Larsson
P. K.
,
Kågedal
K. M.
,
Rosdahl
I. K.
,
Ollinger
K. M.
(
2006
).
UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members.
J. Invest. Dermatol.
126
,
1119
1127
.
Boya
P.
,
Kroemer
G.
(
2008
).
Lysosomal membrane permeabilization in cell death.
Oncogene
27
,
6434
6451
.
Boya
P.
,
Andreau
K.
,
Poncet
D.
,
Zamzami
N.
,
Perfettini
J. L.
,
Metivier
D.
,
Ojcius
D. M.
,
Jäättelä
M.
,
Kroemer
G.
(
2003
).
Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion.
J. Exp. Med.
197
,
1323
1334
.
Bröker
L. E.
,
Huisman
C.
,
Span
S. W.
,
Rodriguez
J. A.
,
Kruyt
F. A.
,
Giaccone
G.
(
2004
).
Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells.
Cancer Res.
64
,
27
30
.
Brunk
U. T.
,
Ericsson
J. L.
(
1972
).
Cytochemical evidence for the leakage of acid phosphatase through ultrastructurally intact lysosomal membranes.
Histochem. J.
4
,
479
491
.
Canbay
A.
,
Guicciardi
M. E.
,
Higuchi
H.
,
Feldstein
A.
,
Bronk
S. F.
,
Rydzewski
R.
,
Taniai
M.
,
Gores
G. J.
(
2003
).
Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis.
J. Clin. Invest.
112
,
152
159
.
Česen
M. H.
,
Pegan
K.
,
Spes
A.
,
Turk
B.
(
2012
).
Lysosomal pathways to cell death and their therapeutic applications.
Exp. Cell Res.
318
,
1245
1251
.
Ch'Ng
J. H.
,
Kotturi
S. R.
,
Chong
A. G.
,
Lear
M. J.
,
Tan
K. S.
(
2010
).
A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases.
Cell Death Dis.
1
,
e26
.
Ch'Ng
J. H.
,
Liew
K.
,
Goh
A. S.
,
Sidhartha
E.
,
Tan
K. S.
(
2011
).
Drug-induced permeabilization of parasite's digestive vacuole is a key trigger of programmed cell death in Plasmodium falciparum.
Cell Death Dis.
2
,
e216
.
Cirman
T.
,
Oresić
K.
,
Mazovec
G. D.
,
Turk
V.
,
Reed
J. C.
,
Myers
R. M.
,
Salvesen
G. S.
,
Turk
B.
(
2004
).
Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins.
J. Biol. Chem.
279
,
3578
3587
.
Conus
S.
,
Perozzo
R.
,
Reinheckel
T.
,
Peters
C.
,
Scapozza
L.
,
Yousefi
S.
,
Simon
H. U.
(
2008
).
Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation.
J. Exp. Med.
205
,
685
698
.
de Duve
C.
(
1983
).
Lysosomes revisited.
Eur. J. Biochem.
137
,
391
397
.
de Duve
C.
,
de Barsy
T.
,
Poole
B.
,
Trouet
A.
,
Tulkens
P.
,
Van Hoof
F.
(
1974
).
Commentary. Lysosomotropic agents.
Biochem. Pharmacol.
23
,
2495
2531
.
Deiss
L. P.
,
Galinka
H.
,
Berissi
H.
,
Cohen
O.
,
Kimchi
A.
(
1996
).
Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha.
EMBO J.
15
,
3861
3870
.
Di Piazza
M.
,
Mader
C.
,
Geletneky
K.
,
Herrero Y Calle
M.
,
Weber
E.
,
Schlehofer
J.
,
Deleu
L.
,
Rommelaere
J.
(
2007
).
Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells.
J. Virol.
81
,
4186
4198
.
DiFranco
K. M.
,
Gupta
A.
,
Galusha
L. E.
,
Perez
J.
,
Nguyen
T. V.
,
Fineza
C. D.
,
Kachlany
S. C.
(
2012
).
Leukotoxin (Leukothera®) targets active leukocyte function antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway.
J. Biol. Chem.
287
,
17618
17627
.
Droga-Mazovec
G.
,
Bojic
L.
,
Petelin
A.
,
Ivanova
S.
,
Romih
R.
,
Repnik
U.
,
Salvesen
G. S.
,
Stoka
V.
,
Turk
V.
,
Turk
B.
(
2008
).
Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues.
J. Biol. Chem.
283
,
19140
19150
.
Edelmann
B.
,
Bertsch
U.
,
Tchikov
V.
,
Winoto-Morbach
S.
,
Perrotta
C.
,
Jakob
M.
,
Adam-Klages
S.
,
Kabelitz
D.
,
Schütze
S.
(
2011
).
Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes.
EMBO J.
30
,
379
394
.
Emert-Sedlak
L.
,
Shangary
S.
,
Rabinovitz
A.
,
Miranda
M. B.
,
Delach
S. M.
,
Johnson
D. E.
(
2005
).
Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death.
Mol. Cancer Ther.
4
,
733
742
.
Erdal
H.
,
Berndtsson
M.
,
Castro
J.
,
Brunk
U.
,
Shoshan
M. C.
,
Linder
S.
(
2005
).
Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis.
Proc. Natl. Acad. Sci. USA
102
,
192
197
.
Eskelinen
E. L.
,
Tanaka
Y.
,
Saftig
P.
(
2003
).
At the acidic edge: emerging functions for lysosomal membrane proteins.
Trends Cell Biol.
13
,
137
145
.
Fehrenbacher
N.
,
Gyrd-Hansen
M.
,
Poulsen
B.
,
Felbor
U.
,
Kallunki
T.
,
Boes
M.
,
Weber
E.
,
Leist
M.
,
Jäättelä
M.
(
2004
).
Sensitization to the lysosomal cell death pathway upon immortalization and transformation.
Cancer Res.
64
,
5301
5310
.
Fehrenbacher
N.
,
Bastholm
L.
,
Kirkegaard-Sørensen
T.
,
Rafn
B.
,
Bøttzauw
T.
,
Nielsen
C.
,
Weber
E.
,
Shirasawa
S.
,
Kallunki
T.
,
Jäättelä
M.
(
2008
).
Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2.
Cancer Res.
68
,
6623
6633
.
Feofanov
A. V.
,
Sharonov
G. V.
,
Astapova
M. V.
,
Rodionov
D. I.
,
Utkin
Y. N.
,
Arseniev
A. S.
(
2005
).
Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage.
Biochem. J.
390
,
11
18
.
Firestone
R. A.
,
Pisano
J. M.
,
Bonney
R. J.
(
1979
).
Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents.
J. Med. Chem.
22
,
1130
1133
.
Fogarty
M. P.
,
McCormack
R. M.
,
Noonan
J.
,
Murphy
D.
,
Gowran
A.
,
Campbell
V. A.
(
2010
).
A role for p53 in the beta-amyloid-mediated regulation of the lysosomal system.
Neurobiol. Aging
31
,
1774
1786
.
Foghsgaard
L.
,
Wissing
D.
,
Mauch
D.
,
Lademann
U.
,
Bastholm
L.
,
Boes
M.
,
Elling
F.
,
Leist
M.
,
Jäättelä
M.
(
2001
).
Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor.
J. Cell Biol.
153
,
999
1010
.
Fuchs
R.
,
Blaas
D.
(
2010
).
Uncoating of human rhinoviruses.
Rev. Med. Virol.
20
,
281
297
.
Gobeil
S.
,
Boucher
C. C.
,
Nadeau
D.
,
Poirier
G. G.
(
2001
).
Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases.
Cell Death Differ.
8
,
588
594
.
Gonzalez
P.
,
Mader
I.
,
Tchoghandjian
A.
,
Enzenmüller
S.
,
Cristofanon
S.
,
Basit
F.
,
Debatin
K. M.
,
Fulda
S.
(
2012
).
Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process.
Cell Death Differ.
19
,
1337
1346
.
Gowran
A.
,
Campbell
V. A.
(
2008
).
A role for p53 in the regulation of lysosomal permeability by delta 9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration.
J. Neurochem.
105
,
1513
1524
.
Groth-Pedersen
L.
,
Jäättelä
M.
(
2013
).
Combating apoptosis and multidrug resistant cancers by targeting lysosomes.
Cancer Lett.
332
,
265
274
.
Groth-Pedersen
L.
,
Ostenfeld
M. S.
,
Høyer-Hansen
M.
,
Nylandsted
J.
,
Jäättelä
M.
(
2007
).
Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine.
Cancer Res.
67
,
2217
2225
.
Groth-Pedersen
L.
,
Aits
S.
,
Corcelle-Termeau
E.
,
Petersen
N. H.
,
Nylandsted
J.
,
Jäättelä
M.
(
2012
).
Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.
PLoS ONE
7
,
e45381
.
Guicciardi
M. E.
,
Deussing
J.
,
Miyoshi
H.
,
Bronk
S. F.
,
Svingen
P. A.
,
Peters
C.
,
Kaufmann
S. H.
,
Gores
G. J.
(
2000
).
Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c.
J. Clin. Invest.
106
,
1127
1137
.
Guicciardi
M. E.
,
Miyoshi
H.
,
Bronk
S. F.
,
Gores
G. J.
(
2001
).
Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications.
Am. J. Pathol.
159
,
2045
2054
.
Guicciardi
M. E.
,
Bronk
S. F.
,
Werneburg
N. W.
,
Yin
X. M.
,
Gores
G. J.
(
2005
).
Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis.
Gastroenterology
129
,
269
284
.
Guicciardi
M. E.
,
Bronk
S. F.
,
Werneburg
N. W.
,
Gores
G. J.
(
2007
).
cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis.
Am. J. Physiol. Gastrointest. Liver Physiol.
292
,
G1337
G1346
.
Gyrd-Hansen
M.
,
Farkas
T.
,
Fehrenbacher
N.
,
Bastholm
L.
,
Høyer-Hansen
M.
,
Elling
F.
,
Wallach
D.
,
Flavell
R.
,
Kroemer
G.
,
Nylandsted
J.
 et al. (
2006
).
Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9.
Mol. Cell. Biol.
26
,
7880
7891
.
Halangk
W.
,
Lerch
M. M.
,
Brandt-Nedelev
B.
,
Roth
W.
,
Ruthenbuerger
M.
,
Reinheckel
T.
,
Domschke
W.
,
Lippert
H.
,
Peters
C.
,
Deussing
J.
(
2000
).
Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis.
J. Clin. Invest.
106
,
773
781
.
Happo
L.
,
Strasser
A.
,
Cory
S.
(
2012
).
BH3-only proteins in apoptosis at a glance.
J. Cell Sci.
125
,
1081
1087
.
Hayashi
M. A.
,
Nascimento
F. D.
,
Kerkis
A.
,
Oliveira
V.
,
Oliveira
E. B.
,
Pereira
A.
,
Rádis-Baptista
G.
,
Nader
H. B.
,
Yamane
T.
,
Kerkis
I.
 et al. (
2008
).
Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization.
Toxicon
52
,
508
517
.
Heinrich
M.
,
Wickel
M.
,
Schneider-Brachert
W.
,
Sandberg
C.
,
Gahr
J.
,
Schwandner
R.
,
Weber
T.
,
Saftig
P.
,
Peters
C.
,
Brunner
J.
 et al. (
1999
).
Cathepsin D targeted by acid sphingomyelinase-derived ceramide.
EMBO J.
18
,
5252
5263
.
Heinrich
M.
,
Neumeyer
J.
,
Jakob
M.
,
Hallas
C.
,
Tchikov
V.
,
Winoto-Morbach
S.
,
Wickel
M.
,
Schneider-Brachert
W.
,
Trauzold
A.
,
Hethke
A.
 et al. (
2004
).
Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation.
Cell Death Differ.
11
,
550
563
.
Hentze
H.
,
Lin
X. Y.
,
Choi
M. S.
,
Porter
A. G.
(
2003
).
Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin.
Cell Death Differ.
10
,
956
968
.
Houseweart
M. K.
,
Pennacchio
L. A.
,
Vilaythong
A.
,
Peters
C.
,
Noebels
J. L.
,
Myers
R. M.
(
2003
).
Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1).
J. Neurobiol.
56
,
315
327
.
Huang
W. C.
,
Lin
Y. S.
,
Chen
C. L.
,
Wang
C. Y.
,
Chiu
W. H.
,
Lin
C. F.
(
2009
).
Glycogen synthase kinase-3beta mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia.
J. Pharmacol. Exp. Ther.
329
,
524
531
.
Ivanova
S.
,
Gregorc
U.
,
Vidergar
N.
,
Javier
R.
,
Bredt
D. S.
,
Vandenabeele
P.
,
Pardo
J.
,
Simon
M. M.
,
Turk
V.
,
Banks
L.
 et al. (
2011
).
MAGUKs, scaffolding proteins at cell junctions, are substrates of different proteases during apoptosis.
Cell Death. Dis.
2
,
e116
.
Ivanova
L.
,
Egge-Jacobsen
W. M.
,
Solhaug
A.
,
Thoen
E.
,
Fæste
C. K.
(
2012
).
Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells.
Chem. Res. Toxicol.
25
,
1662
1674
.
Johansson
A. C.
,
Appelqvist
H.
,
Nilsson
C.
,
Kågedal
K.
,
Roberg
K.
,
Ollinger
K.
(
2010
).
Regulation of apoptosis-associated lysosomal membrane permeabilization.
Apoptosis
15
,
527
540
.
Joy
B.
,
Sivadasan
R.
,
Abraham
T. E.
,
John
M.
,
Sobhan
P. K.
,
Seervi
M.
,
T R
S.
(
2010
).
Lysosomal destabilization and cathepsin B contributes for cytochrome c release and caspase activation in embelin-induced apoptosis.
Mol. Carcinog.
49
,
324
336
.
Kagan
B. L.
,
Finkelstein
A.
,
Colombini
M.
(
1981
).
Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.
Proc. Natl. Acad. Sci. USA
78
,
4950
4954
.
Kågedal
K.
,
Zhao
M.
,
Svensson
I.
,
Brunk
U. T.
(
2001
).
Sphingosine-induced apoptosis is dependent on lysosomal proteases.
Biochem. J.
359
,
335
343
.
Kågedal
K.
,
Johansson
A. C.
,
Johansson
U.
,
Heimlich
G.
,
Roberg
K.
,
Wang
N. S.
,
Jürgensmeier
J. M.
,
Ollinger
K.
(
2005
).
Lysosomal membrane permeabilization during apoptosis – involvement of Bax?
Int. J. Exp. Pathol.
86
,
309
321
.
Kallunki
T.
,
Olsen
O. D.
,
Jäättelä
M.
(
2012
).
Cancer-associated lysosomal changes: friends or foes?
Oncogene.
32
,
1995
2004
.
Kinser
R. D.
,
Dolph
P. J.
(
2012
).
Cathepsin proteases mediate photoreceptor cell degeneration in Drosophila.
Neurobiol. Dis.
46
,
655
662
.
Kirkegaard
T.
,
Jäättelä
M.
(
2009
).
Lysosomal involvement in cell death and cancer.
Biochim. Biophys. Acta
1793
,
746
754
.
Kirkegaard
T.
,
Roth
A. G.
,
Petersen
N. H.
,
Mahalka
A. K.
,
Olsen
O. D.
,
Moilanen
I.
,
Zylicz
A.
,
Knudsen
J.
,
Sandhoff
K.
,
Arenz
C.
 et al. (
2010
).
Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology.
Nature
463
,
549
553
.
Kreuzaler
P.
,
Watson
C. J.
(
2012
).
Killing a cancer: what are the alternatives?
Nat. Rev. Cancer
12
,
411
424
.
Kreuzaler
P. A.
,
Staniszewska
A. D.
,
Li
W.
,
Omidvar
N.
,
Kedjouar
B.
,
Turkson
J.
,
Poli
V.
,
Flavell
R. A.
,
Clarkson
R. W.
,
Watson
C. J.
(
2011
).
Stat3 controls lysosomal-mediated cell death in vivo.
Nat. Cell Biol.
13
,
303
309
.
Kroemer
G.
,
Jäättelä
M.
(
2005
).
Lysosomes and autophagy in cell death control.
Nat. Rev. Cancer
5
,
886
897
.
Kurz
T.
,
Terman
A.
,
Gustafsson
B.
,
Brunk
U. T.
(
2008a
).
Lysosomes and oxidative stress in aging and apoptosis.
Biochim. Biophys. Acta
1780
,
1291
1303
.
Kurz
T.
,
Terman
A.
,
Gustafsson
B.
,
Brunk
U. T.
(
2008b
).
Lysosomes in iron metabolism, ageing and apoptosis.
Histochem. Cell Biol.
129
,
389
406
.
Laforge
M.
,
Petit
F.
,
Estaquier
J.
,
Senik
A.
(
2007
).
Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef.
J. Virol.
81
,
11426
11440
.
Li
W.
,
Yuan
X.
,
Nordgren
G.
,
Dalen
H.
,
Dubowchik
G. M.
,
Firestone
R. A.
,
Brunk
U. T.
(
2000
).
Induction of cell death by the lysosomotropic detergent MSDH.
FEBS Lett.
470
,
35
39
.
Li
N.
,
Zheng
Y.
,
Chen
W.
,
Wang
C.
,
Liu
X.
,
He
W.
,
Xu
H.
,
Cao
X.
(
2007
).
Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis.
Cancer Res.
67
,
11176
11185
.
Liu
N.
,
Raja
S. M.
,
Zazzeroni
F.
,
Metkar
S. S.
,
Shah
R.
,
Zhang
M.
,
Wang
Y.
,
Brömme
D.
,
Russin
W. A.
,
Lee
J. C.
 et al. (
2003
).
NF-kappaB protects from the lysosomal pathway of cell death.
EMBO J.
22
,
5313
5322
.
Lozach
P. Y.
,
Huotari
J.
,
Helenius
A.
(
2011
).
Late-penetrating viruses.
Curr. Opin. Virol.
1
,
35
43
.
Luke
C. J.
,
Pak
S. C.
,
Askew
Y. S.
,
Naviglia
T. L.
,
Askew
D. J.
,
Nobar
S. M.
,
Vetica
A. C.
,
Long
O. S.
,
Watkins
S. C.
,
Stolz
D. B.
 et al. (
2007
).
An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury.
Cell
130
,
1108
1119
.
Maier
O.
,
Galan
D. L.
,
Wodrich
H.
,
Wiethoff
C. M.
(
2010
).
An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature.
Virology
402
,
11
19
.
Marchi
B.
,
Burlando
B.
,
Moore
M. N.
,
Viarengo
A.
(
2004
).
Mercury- and copper-induced lysosomal membrane destabilisation depends on [Ca2+]i dependent phospholipase A2 activation.
Aquat. Toxicol.
66
,
197
204
.
Matsuda
S.
,
Okada
N.
,
Kodama
T.
,
Honda
T.
,
Iida
T.
(
2012
).
A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes.
PLoS Pathog.
8
,
e1002803
.
Meade
B. R.
,
Dowdy
S. F.
(
2007
).
Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides.
Adv. Drug Deliv. Rev.
59
,
134
140
.
Michallet
M. C.
,
Saltel
F.
,
Flacher
M.
,
Revillard
J. P.
,
Genestier
L.
(
2004
).
Cathepsin-dependent apoptosis triggered by supraoptimal activation of T lymphocytes: a possible mechanism of high dose tolerance.
J. Immunol.
172
,
5405
5414
.
Mora
R.
,
Dokic
I.
,
Kees
T.
,
Hüber
C. M.
,
Keitel
D.
,
Geibig
R.
,
Brügge
B.
,
Zentgraf
H.
,
Brady
N. R.
,
Régnier-Vigouroux
A.
(
2010
).
Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma.
Glia
58
,
1364
1383
.
Newman
Z. L.
,
Leppla
S. H.
,
Moayeri
M.
(
2009
).
CA-074Me protection against anthrax lethal toxin.
Infect. Immun.
77
,
4327
4336
.
Nylandsted
J.
,
Rohde
M.
,
Brand
K.
,
Bastholm
L.
,
Elling
F.
,
Jäättelä
M.
(
2000
).
Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2.
Proc. Natl. Acad. Sci. USA
97
,
7871
7876
.
Nylandsted
J.
,
Gyrd-Hansen
M.
,
Danielewicz
A.
,
Fehrenbacher
N.
,
Lademann
U.
,
Høyer-Hansen
M.
,
Weber
E.
,
Multhoff
G.
,
Rohde
M.
,
Jäättelä
M.
(
2004
).
Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization.
J. Exp. Med.
200
,
425
435
.
Oberle
C.
,
Huai
J.
,
Reinheckel
T.
,
Tacke
M.
,
Rassner
M.
,
Ekert
P. G.
,
Buellesbach
J.
,
Borner
C.
(
2010
).
Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes.
Cell Death Differ.
17
,
1167
1178
.
Ostenfeld
M. S.
,
Fehrenbacher
N.
,
Høyer-Hansen
M.
,
Thomsen
C.
,
Farkas
T.
,
Jäättelä
M.
(
2005
).
Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress.
Cancer Res.
65
,
8975
8983
.
Ostenfeld
M. S.
,
Høyer-Hansen
M.
,
Bastholm
L.
,
Fehrenbacher
N.
,
Olsen
O. D.
,
Groth-Pedersen
L.
,
Puustinen
P.
,
Kirkegaard-Sørensen
T.
,
Nylandsted
J.
,
Farkas
T.
 et al. (
2008
).
Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation.
Autophagy
4
,
487
499
.
Prchla
E.
,
Plank
C.
,
Wagner
E.
,
Blaas
D.
,
Fuchs
R.
(
1995
).
Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2.
J. Cell Biol.
131
,
111
123
.
Prince
L. R.
,
Bianchi
S. M.
,
Vaughan
K. M.
,
Bewley
M. A.
,
Marriott
H. M.
,
Walmsley
S. R.
,
Taylor
G. W.
,
Buttle
D. J.
,
Sabroe
I.
,
Dockrell
D. H.
 et al. (
2008
).
Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.
J. Immunol.
180
,
3502
3511
.
Rammer
P.
,
Groth-Pedersen
L.
,
Kirkegaard
T.
,
Daugaard
M.
,
Rytter
A.
,
Szyniarowski
P.
,
Høyer-Hansen
M.
,
Povlsen
L. K.
,
Nylandsted
J.
,
Larsen
J. E.
 et al. (
2010
).
BAMLET activates a lysosomal cell death program in cancer cells.
Mol. Cancer Ther.
9
,
24
32
.
Repnik
U.
,
Stoka
V.
,
Turk
V.
,
Turk
B.
(
2012
).
Lysosomes and lysosomal cathepsins in cell death.
Biochim. Biophys. Acta
1824
,
22
33
.
Roberg
K.
,
Kågedal
K.
,
Ollinger
K.
(
2002
).
Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts.
Am. J. Pathol.
161
,
89
96
.
Ruppert
S. M.
,
Li
W.
,
Zhang
G.
,
Carlson
A. L.
,
Limaye
A.
,
Durum
S. K.
,
Khaled
A. R.
(
2012
).
The major isoforms of Bim contribute to distinct biological activities that govern the processes of autophagy and apoptosis in interleukin-7 dependent lymphocytes.
Biochim. Biophys. Acta
1823
,
1877
1893
.
Sandvig
K.
,
van Deurs
B.
(
2005
).
Delivery into cells: lessons learned from plant and bacterial toxins.
Gene Ther.
12
,
865
872
.
Schotte
P.
,
Declercq
W.
,
Van Huffel
S.
,
Vandenabeele
P.
,
Beyaert
R.
(
1999
).
Non-specific effects of methyl ketone peptide inhibitors of caspases.
FEBS Lett.
442
,
117
121
.
Sumoza-Toledo
A.
,
Penner
R.
(
2011
).
TRPM2: a multifunctional ion channel for calcium signalling.
J. Physiol.
589
,
1515
1525
.
Syntichaki
P.
,
Xu
K.
,
Driscoll
M.
,
Tavernarakis
N.
(
2002
).
Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans.
Nature
419
,
939
944
.
Taha
T. A.
,
Kitatani
K.
,
Bielawski
J.
,
Cho
W.
,
Hannun
Y. A.
,
Obeid
L. M.
(
2005
).
Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism.
J. Biol. Chem.
280
,
17196
17202
.
Tchikov
V.
,
Bertsch
U.
,
Fritsch
J.
,
Edelmann
B.
,
Schütze
S.
(
2011
).
Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways.
Eur. J. Cell Biol.
90
,
467
475
.
Tosteson
M. T.
,
Chow
M.
(
1997
).
Characterization of the ion channels formed by poliovirus in planar lipid membranes.
J. Virol.
71
,
507
511
.
Turk
V.
,
Stoka
V.
,
Vasiljeva
O.
,
Renko
M.
,
Sun
T.
,
Turk
B.
,
Turk
D.
(
2012
).
Cysteine cathepsins: from structure, function and regulation to new frontiers.
Biochim. Biophys. Acta
1824
,
68
88
.
Uchimoto
T.
,
Nohara
H.
,
Kamehara
R.
,
Iwamura
M.
,
Watanabe
N.
,
Kobayashi
Y.
(
1999
).
Mechanism of apoptosis induced by a lysosomotropic agent, L-Leucyl-L-Leucine methyl ester.
Apoptosis
4
,
357
362
.
Ullio
C.
,
Casas
J.
,
Brunk
U. T.
,
Sala
G.
,
Fabriàs
G.
,
Ghidoni
R.
,
Bonelli
G.
,
Baccino
F. M.
,
Autelli
R.
(
2012
).
Sphingosine mediates TNFα-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells.
J. Lipid Res.
53
,
1134
1143
.
Vancompernolle
K.
,
Van Herreweghe
F.
,
Pynaert
G.
,
Van de Craen
M.
,
De Vos
K.
,
Totty
N.
,
Sterling
A.
,
Fiers
W.
,
Vandenabeele
P.
,
Grooten
J.
(
1998
).
Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity.
FEBS Lett.
438
,
150
158
.
Vanden Berghe
T.
,
Vanlangenakker
N.
,
Parthoens
E.
,
Deckers
W.
,
Devos
M.
,
Festjens
N.
,
Guerin
C. J.
,
Brunk
U. T.
,
Declercq
W.
,
Vandenabeele
P.
(
2010
).
Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features.
Cell Death Differ.
17
,
922
930
.
Vasiljeva
O.
,
Korovin
M.
,
Gajda
M.
,
Brodoefel
H.
,
Bojic
L.
,
Krüger
A.
,
Schurigt
U.
,
Sevenich
L.
,
Turk
B.
,
Peters
C.
 et al. (
2008
).
Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice.
Oncogene
27
,
4191
4199
.
Vázquez-Calvo
A.
,
Saiz
J. C.
,
McCullough
K. C.
,
Sobrino
F.
,
Martín-Acebes
M. A.
(
2012
).
Acid-dependent viral entry.
Virus Res.
167
,
125
137
.
Werneburg
N. W.
,
Guicciardi
M. E.
,
Bronk
S. F.
,
Gores
G. J.
(
2002
).
Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent.
Am. J. Physiol. Gastrointest. Liver Physiol.
283
,
G947
G956
.
Werneburg
N.
,
Guicciardi
M. E.
,
Yin
X. M.
,
Gores
G. J.
(
2004
).
TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent.
Am. J. Physiol. Gastrointest. Liver Physiol.
287
,
G436
G443
.
Werneburg
N. W.
,
Guicciardi
M. E.
,
Bronk
S. F.
,
Kaufmann
S. H.
,
Gores
G. J.
(
2007
).
Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins.
J. Biol. Chem.
282
,
28960
28970
.
Werneburg
N. W.
,
Bronk
S. F.
,
Guicciardi
M. E.
,
Thomas
L.
,
Dikeakos
J. D.
,
Thomas
G.
,
Gores
G. J.
(
2012
).
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2).
J. Biol. Chem.
287
,
24427
24437
.
Wiethoff
C. M.
,
Wodrich
H.
,
Gerace
L.
,
Nemerow
G. R.
(
2005
).
Adenovirus protein VI mediates membrane disruption following capsid disassembly.
J. Virol.
79
,
1992
2000
.
Windelborn
J. A.
,
Lipton
P.
(
2008
).
Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production.
J. Neurochem.
106
,
56
69
.
Wissing
D.
,
Mouritzen
H.
,
Egeblad
M.
,
Poirier
G. G.
,
Jäättelä
M.
(
1997
).
Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis.
Proc. Natl. Acad. Sci. USA
94
,
5073
5077
.
Wu
G. S.
,
Saftig
P.
,
Peters
C.
,
El-Deiry
W. S.
(
1998
).
Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity.
Oncogene
16
,
2177
2183
.
Yamashima
T.
(
2012
).
Hsp70.1 and related lysosomal factors for necrotic neuronal death.
J. Neurochem.
120
,
477
494
.
Yamashima
T.
,
Oikawa
S.
(
2009
).
The role of lysosomal rupture in neuronal death.
Prog. Neurobiol.
89
,
343
358
.
Yamashima
T.
,
Saido
T. C.
,
Takita
M.
,
Miyazawa
A.
,
Yamano
J.
,
Miyakawa
A.
,
Nishijyo
H.
,
Yamashita
J.
,
Kawashima
S.
,
Ono
T.
 et al. (
1996
).
Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys.
Eur. J. Neurosci.
8
,
1932
1944
.
Yamashima
T.
,
Kohda
Y.
,
Tsuchiya
K.
,
Ueno
T.
,
Yamashita
J.
,
Yoshioka
T.
,
Kominami
E.
(
1998
).
Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis’.
Eur. J. Neurosci.
10
,
1723
1733
.
Yap
Y. W.
,
Whiteman
M.
,
Bay
B. H.
,
Li
Y.
,
Sheu
F. S.
,
Qi
R. Z.
,
Tan
C. H.
,
Cheung
N. S.
(
2006
).
Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes.
J. Neurochem.
98
,
1597
1609
.
Yuan
X. M.
,
Li
W.
,
Dalen
H.
,
Lotem
J.
,
Kama
R.
,
Sachs
L.
,
Brunk
U. T.
(
2002
).
Lysosomal destabilization in p53-induced apoptosis.
Proc. Natl. Acad. Sci. USA
99
,
6286
6291
.
Zhang
G.
,
Yi
Y. P.
,
Zhang
G. J.
(
2006
).
Effects of arachidonic acid on the lysosomal ion permeability and osmotic stability.
J. Bioenerg. Biomembr.
38
,
75
82
.
Zhang
H.
,
Zhong
C.
,
Shi
L.
,
Guo
Y.
,
Fan
Z.
(
2009
).
Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis.
J. Immunol.
182
,
6993
7000
.
Zhao
M.
,
Brunk
U. T.
,
Eaton
J. W.
(
2001
).
Delayed oxidant-induced cell death involves activation of phospholipase A2.
FEBS Lett.
509
,
399
404
.
Zhao
M.
,
Antunes
F.
,
Eaton
J. W.
,
Brunk
U. T.
(
2003
).
Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis.
Eur. J. Biochem.
270
,
3778
3786
.
Zhou
Q.
,
Salvesen
G. S.
(
1997
).
Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity.
Biochem. J.
324
,
361
364
.
Ziegler
A.
,
Nervi
P.
,
Dürrenberger
M.
,
Seelig
J.
(
2005
).
The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
Biochemistry
44
,
138
148
.