Cells use their cytoskeletons to move, polarise, divide and maintain organisation within multicellular tissues. Actin is a highly conserved essential building block of the cytoskeleton that forms cables and struts, which are constantly remodelled by more than 100 different actin-binding proteins. The initiation of new actin filaments and their subsequent organisation is a key step in the development of specialised cellular structures, such as filopodia (spike-like protrusions), lamellipodia (sheet-like protrusions), stress fibers (elastic contractile bundles), microvilli (finger-like surface protrusions) and invadopodia (invasive cell feet) (see Table 1 for a more complete list). Whereas the cytoskeleton is important in normal cellular function, it can be subverted in cancer cells and contributes to changes in cell growth, stiffness, movement and invasiveness. We hereby give an overview of the role of actin-filament bundling in cellular structures and discuss how alterations in the activity or expression patterns of actin-bundling proteins could be linked to cancer initiation or progression.

Actin is one of the most abundant proteins in mammalian cells, and underpins the compartmentalisation of cellular contents and motility. Filaments are assembled into superstructures by actin-filament-bundling proteins. Some bundling proteins (e.g. fascin and α-actinin) form parallel bundles, whereas others (e.g. filamin) form looser orthogonal meshworks (Bartles, 2000). In general, crosslinking proteins have two actin-binding sites, often because they dimerise, and the location of actin-binding sites determines the filament arrangement and type of crosslinked structure formed. Actin filaments are polar, with a fast-growing and a slow-growing end, and this polarity is maintained by a cycle of ATP hydrolysis (see Poster) (Pollard and Cooper, 2009). Bundling proteins can be selective about the orientation with which they bind to the filament, allowing the specific formation of bundles of either mixed or uniform polarity (see Poster). Bundling proteins are often modular and contain repeated actin-filament-binding domains (see Poster). For example, the calponin-homology domain (CH domain), gelsolin domain and spectrin domain are used by many actin bundlers (see Poster).

Metastatic cancer cells use actin bundles to underpin protrusions that allow them to break away from a primary tumour and invade through the surrounding tissue. After travelling in the vasculature or lymphatic system, they exit into a new niche and seed a new tumour, often after lying dormant for months or years (Hanahan and Weinberg, 2011). During metastasis, cells adapt their motility and adhesive capacity to suit their environment, in much the same way as embryonic cells do during morphogenesis (recently reviewed by Hanahan and Weinberg, 2011; Roussos et al., 2011b). The actin cytoskeleton serves as a scaffold for signalling, a connection with the extracellular environment and a mechanosensor. However, there is no general rule whether actin bundling promotes or inhibits cancer metastasis; rather, cancer cells can adjust the extent of actin bundling to alter their signalling, growth, or adhesion and mechanical properties and thus can be selected for survival during various phases of tumour progression and metastatic spread. Typically, mechanical stiffness is positively correlated with invasion and metastatic potential (Narumiya et al., 2009), but exceptions exist (Swaminathan et al., 2011).

Table 1.

Clinical correlation between actin-bundling proteins and cancer

Clinical correlation between actin-bundling proteins and cancer
Clinical correlation between actin-bundling proteins and cancer

The actin cytoskeleton maintains the compartmentalisation of cellular contents and thus is a major determinant of cell polarity. Polarity is essential for normal tissue homeostasis, and when disrupted, can lead to tumour promotion through the breakdown of cell–cell junctions and to epithelial-to-mesenchymal transition (EMT) (reviewed by Royer and Lu, 2011). Cell divisions are also polarised within tissues, so if polarity is lost, tissue integrity can be compromised, resulting in overgrowth, aberrant invasive behaviour and promotion of tumours (reviewed by Royer and Lu, 2011). Actin bundling contributes to the polarity of epithelial cells by maintaining cell–cell adherens junctions, tight junctions and microvilli, and to polarised membrane trafficking (see Poster). However, understanding of the mechanism by which cells subvert actin bundling to succeed in metastasis is still very much emerging and represents an exciting area of future research.

Below, we summarise a subset of the various cellular structures that rely on actin bundles for their integrity, and the actin bundling proteins, which have been implicated in cancer initiation or progression.

Cortex

Underneath the plasma membrane lies a meshwork of actin filaments and crosslinking proteins termed the cortex (see Poster). A strong cortical attachment to the plasma membrane that is balanced by contractility between actin and myosin promotes protrusive motility, which is often referred to as ‘mesenchymal’. By contrast, a weaker attachment of the cytoskeleton to the cortex than the force of actin- and myosin-based contractility promotes blebs, which are detachments between the cortex and membrane, leading to bleb-based motility (Friedl and Wolf, 2010). Modulation of cortical stiffness thus changes how cells move in different environments. The cortex also provides a scaffold for the organisation of transmembrane receptors and glycoproteins into networks for effective signal transduction and coupling of mechanical stresses to signals.

Non-muscle myosin IIa and myosin IIb are the main actin-based contractile myosin motors that crosslink actin filaments of the cell cortex and regulate cell stiffness. Phosphorylation of the myosin II light chain triggers the contractile activity of myosin II (Narumiya et al., 2009). High levels of the myosin kinase Rho-associated protein kinase 1 (ROCK1) are associated with poor survival in breast cancer patients (Lane et al., 2008) and correlate with poor tumour differentiation, muscle invasion and lymph node metastasis in bladder cancer (Kamai et al., 2003). One clinical study showed a positive correlation between myosin light chain kinase, which activates myosin II, with disease recurrence and metastasis in non-small cell lung cancer (Minamiya et al., 2005). Better reagents for the detection of active myosin II or specific enrichment of myosin II isoforms are needed for further clinical studies (Vicente-Manzanares et al., 2009).

Tumours can also influence the contractile properties of stromal cells, such as fibroblasts (Gaggioli et al., 2007; Sanz-Moreno et al., 2008; Wyckoff et al., 2006). Increased stromal cell contractility promotes increased matrix stiffness and this has tumour-promoting properties (Samuel et al., 2011). Matrix stiffness promotes increased integrin attachment, and signalling and activation of pro-survival and growth signals such as activation of focal adhesion kinase (FAK) (Frame et al., 2010).

Whereas myosin II forms parallel contractile bundles, filamin proteins are long, hinged actin bundlers that provide mechanical strength and signalling scaffolds close to membranes (Popowicz et al., 2006) (see Poster). Filamins are mechanosensors, and regulate transcription, membrane trafficking, ion channel function, adhesion and receptor-mediated signalling (Popowicz et al., 2006). For example, filamin binds to the androgen receptor in a complex with β1 integrin, and modulates cell-motility responses downstream of androgen signalling, which could drive invasion in prostate cancer (Castoria et al., 2011; Loy et al., 2003) (see Poster). Filamins also form a same complex with a pro-prion protein PrP in pancreatic cancer to give cancer cells a growth advantage (Sy et al., 2010), and this same complex might contribute to progression of melanoma (Li et al., 2010c). Filamin modulates hepatocyte growth factor receptor (HGFR, also known as the proto-oncogene Met) signalling, which is crucial for many epithelial cancers to metastasise (Zhou et al., 2011). Filamins might also form part of the nuclear skeleton, where they interact with DNA repair complexes such as breast cancer type 1 susceptibility protein (BRCA1) (Velkova et al., 2010) and with cell cycle progression proteins such as cyclin D1 (CCND1) (Zhong et al., 2010) (also see Poster). Finally, a secreted variant of filamin has been detected in the blood of patients with advanced metastatic breast cancer and astrocytomas, indicating that filamin might have a prognostic value (Alper et al., 2009) (Table 1).

Spectrins (also called fodrins) are another class of important actin crosslinkers of the cell cortex, which have been implicated in cancer. In colorectal and pancreatic cancers, β2-spectrin binds to and regulates the activity of transcriptional activators SMAD3 and SMAD4 of the transforming growth factor beta (TGFβ) signalling pathway. TGFβ signalling normally acts as a tumour suppressor of colorectal cancer by suppressing growth and promoting apoptosis, but its dysregulation through loss of β2-spectrin inappropriately activates Wnt signalling and promotes tumourigenesis (Jiang et al., 2010; Thenappan et al., 2009) (also see Poster). Embryonic spectrin (also called embryonic liver fodrin, ELF) shows altered expression in some cancers (Table 1) and its loss causes deregulation of cyclin D1 and aberrant cell cycle progression (Kitisin et al., 2007).

Cell–cell junction

Epithelia are held together by adherens junctions, which contain transmembrane cadherin receptors that interact extracellularly with the cadherins of neighbouring cells and intracellularly with the actin cytoskeleton (see Poster) (reviewed by Etienne-Manneville, 2011). Adherens junctions connect to the cell cortex and to actin filament bundles that are held in place by actin-bundling proteins, such as α-actinin and myosin II (Etienne-Manneville, 2011). When epithelial cells become cancerous, adherens junctions break down, which frees β-catenin from cadherins to enter the nucleus and activate transcriptional changes that lead to endothelial–mesenchymal transition (EMT) through the canonical Wnt signalling pathway (Heuberger and Birchmeier, 2010). Junctional breakdown also physically releases tumour cells, allowing them to escape from the primary tumour and invade the surrounding tissue (see Poster).

α-Actinin-1 and α-actinin-4 localise to cell–cell contacts (Gonzalez et al., 2001) where they regulate actin bundling and epithelial integrity. α-Actinin-4 binds to and recruits the tight junction proteins junctional Rab13 binding protein (JRAB) and molecule interacting with CAS-like 2 (MICAL-L2) and thus participates in tight junction formation (Nakatsuji et al., 2008). Tight junctions lie apical to adherens junctions (see Poster) and maintain impermeability of epithelial tissues. Loss of α-actinin-4 disrupts the integrity of tight junctions and has been associated with cancer invasion and metastasis (Nakatsuji et al., 2008). However, in most studies, high levels of α-actinin-4 correlate with poor outcome or advanced disease (Honda et al., 1998; Honda et al., 2005; Honda et al., 2004; Kikuchi et al., 2008; Menez et al., 2004; Patrie et al., 2002; Weins et al., 2007; Welsch et al., 2009; Yamada et al., 2010; Yamamoto et al., 2007; Yamamoto et al., 2009), and the relevance of its role in tight junction assembly for cancer thus remains unclear. Other functions of α-actinin-4, such as in leading edge protrusion (Honda et al., 1998) might contribute to metastasis and further study is warranted.

Microvillus

Microvilli are finger-like projections of the plasma membrane that increase the surface area of cells to enhance absorption and secretion. Intestinal brush-border microvilli contain a parallel actin bundle core made up of about 40 actin filaments of uniform polarity that are crosslinked by at least three different actin-bundling proteins: T-plastin (also named T-fimbrin), villin and small espin (Bartles et al., 1998; Loomis et al., 2003). Microvilli also contain the cortical components spectrin and myosin II in the terminal web (actin meshwork) at their base (see Poster) (Brown and McKnight, 2010) and are bound to the apical surface by brush border myosin I (McConnell and Tyska, 2007). T-plastin is a monomeric protein, highly expressed in the small intestine, that crosslinks F-actin into straight bundles (Brown and McKnight, 2010; Delanote et al., 2005). L-plastin (Table 1, also known as L-fimbrin) is normally only present in haematopoietic cells; however, one study showed that it is expressed in more than half of epithelial carcinomas and non-epithelial mesenchymal tumours (Delanote et al., 2005). L-plastin expression further correlates with stage and severity of colorectal cancers and is considered a potential prognostic indicator (Foran et al., 2006; Yuan et al., 2010). Villin mediates bundling, nucleation (initiation of new filaments), capping and severing of actin filaments in a Ca2+-dependent manner (Friederich et al., 1990), and is highly expressed in adenocarcinomas originating from epithelial cells of the intestinal tract that bear brush border microvilli (Grone et al., 1986; Moll et al., 1987; Suh et al., 2005). Small espin contributes to elongation of microvilli from the barbed end of the actin bundle, but has not yet been implicated in cancer. In malignant cells, an increased number of microvilli with irregular morphology can correlate with metastatic status (Ren, 1991; Ren et al., 1990), but the significance of this is unclear.

Filopodium

Filopodia are long, thin, actin-based protrusions that promote cell migration and contribute to cancer cell invasion (Mattila and Lappalainen, 2008; Nurnberg et al., 2011) (see Poster). The parallel actin-bundling protein fascin is found in filopodia, but is normally expressed in cells derived from mesenchymal and neural sources rather than epithelia (Adams, 2004a; Adams, 2004b; Hashimoto et al., 2011). Fascin expression is often upregulated in epithelial cancers and is associated with invasion and metastasis (Machesky and Li, 2010). Fascin-mediated actin bundle formation strengthens filaments and increases the lifetime of both filopodia and invasive protrusions (Li et al., 2010a). Fascin is highly expressed at the invasive front of tumours, and in vitro reduction of fascin causes reduced motility and invasion (Hashimoto et al., 2007; Hashimoto et al., 2005; Li et al., 2010a; Schoumacher et al., 2010). Formins (including the mDia proteins, see Poster) are also filopodial proteins with both actin-nucleating and actin-bundling activity. The actin-binding FH2 domains of mDia1, mDia2 and mDia3 dimerise and can both nucleate and bundle actin (Machaidze et al., 2010). Not much is known about the role(s) of the mDia proteins or indeed the other 12 mammalian formins in cancer (Table 1) (Nurnberg et al., 2011).

The Ena/VASP proteins (Mena, VASP and Evl in mammals) comprise a family of proteins that promote actin polymerisation and bundling, and associate with filopodia tips, as well as with lamellipodia, cadherin-based cell–cell contacts (Breitsprecher et al., 2008; Breitsprecher et al., 2011; Scott et al., 2006) and focal adhesions (reviewed by Pula and Krause, 2008). Recently a splice variant of Mena, termed MenaINV, was found to be overexpressed in breast and colorectal cancers (Di Modugno et al., 2004). Mena deficiency decreases invasion, metastasis and tumour progression in polyoma middle-T transgenic mouse models and impairs normal breast development (Roussos et al., 2011a; Roussos et al., 2010; Roussos et al., 2011c).

Invadopodium

Invadopodia are dynamic actin-rich membrane protrusions found only in invasive cancer cells (Weaver, 2006). They contain a mixture of bundled and branched actin (Schoumacher et al., 2010) and are used for matrix remodeling (see Poster). Podosomes are structurally and functionally similar to invadopodia, but occur in hematopoietic cells, endothelial cells and Src-transformed fibroblasts (Murphy and Courtneidge, 2011). Invadopodia and podosomes contain a number of actin-bundling proteins, including fascin (Li et al., 2010a; Schoumacher et al., 2010), α-actinin, formins and Ena/VASP proteins (see Poster) (Murphy and Courtneidge, 2011). The actin bundles are used for protrusion into matrix and possibly for delivery of endocytic cargo such as matrix metalloproteases (Murphy and Courtneidge, 2011).

Stress fibres

Stress fibres are bundles of parallel actin filaments with mixed polarity along their length (Cramer et al., 1997) (see Poster) and myosin II motors that are crosslinked by alternating zones of α-actinin and Ena/VASP proteins and anchored at their ends by focal adhesion proteins (see Poster). Stress fibres connect the cytoskeleton to the extracellular matrix at focal adhesion sites, where integrins span the plasma membrane and cluster to form large macromolecular hubs of signalling and cytoskeletal proteins (Wolfenson et al., 2009). Focal adhesions are mechanosensing signal-transducing assemblies that reflect the interaction of a cell with its stroma and relay survival and growth signals. α-Actinin-1 distributes along stress fibres in a periodic fashion and binds a number of focal adhesion constituents (Edlund et al., 2001), thereby connecting the actin cytoskeleton to the cell membrane. α-Actinin-4 is generally found at the leading edges of motile cells in lamellipodia. α-Actinin (especially α-actinin-4) is implicated in multiple tumours, including breast (Guvakova et al., 2002), ovarian (Yamamoto et al., 2009) (where it is a prognostic indicator of poor outcome), pancreas (Kikuchi et al., 2008) and lung cancers (Menez et al., 2004) (see Table 1).

Epithelial protein lost in neoplasm (Eplin), is another component of stress fibres; it has filament side-binding and bundling activity that is antagonistic toward Arp2/3 complex branching activity (Maul et al., 2003) and is downregulated during cancer progression (Table 1). Eplin contains a central LIM domain flanked by two actin-filament-binding sites. Palladin is an immunoglobulin-repeat-containing protein that binds to actin filaments and serves as a scaffold for other stress-fibre-associated proteins, such as VASP, α-actinin, EPS8 and the ERM (ezrin, moesin and radixin) proteins. It is a substrate of AKT1 kinase and it can promote actin bundling and inhibit breast cancer cell invasion in vitro (Chin and Toker, 2010). However, another study found that knockdown of palladin inhibits invasive migration of breast cancer cells (Goicoechea et al., 2009). Clearly, there is a need for further study and in vivo verification of the role of palladin in metastasis.

Supervillin is a component of focal adhesions, which contains three villin-related actin-binding sites (Wulfkuhle et al., 1999). It also has four predicted nuclear localisation signals and might shuttle in and out of the nucleus. In prostate cancer, it might be associated with the androgen receptor and therefore involved in the control of cell growth and androgen-dependent signalling (Table 1) (Sampson et al., 2001).

Cancer metastasis represents the most deadly aspect of most cancers and also arguably one of the most exciting frontiers for modern biomedical investigation. Tackling metastasis is a complex goal and the improvement of technologies to study tumour lineages and metastatic spread are rapidly developing (e.g. Campbell et al., 2010; Yachida et al., 2010). But equally, as we find out more about how tumours evolve, we are also humbled by the staggering complexity of cancer and of the body. The actin cytoskeleton represents a major network of proteins that impinge on motility, invasion, polarity, survival and growth of normal cells, and as such is often subverted by tumour cells. We are just starting to understand how tumours manipulate the cytoskeleton to gain advantage and to uncover those key proteins that might be future targets against invasion and metastasis. It seems unlikely that one particular actin-binding protein will ever rise above the rest as the most important target in metastasis, but rather, like signal transduction networks, we will find hub proteins or key pathways that can promote tumour progression and develop therapies aimed at these.

Adams
J. C.
(
2004a
).
Fascin protrusions in cell interactions
.
Trends Cardiovasc. Med.
14
,
221
226
.
Adams
J. C.
(
2004b
).
Roles of fascin in cell adhesion and motility
.
Curr. Opin. Cell Biol.
16
,
590
596
.
Ai
J.
,
Huang
H.
,
Lv
X.
,
Tang
Z.
,
Chen
M.
,
Chen
T.
,
Duan
W.
,
Sun
H.
,
Li
Q.
,
Tan
R.
, et al.
. (
2011
).
FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma
.
Cell Physiol. Biochem.
27
,
207
216
.
Alper
O.
,
Stetler-Stevenson
W. G.
,
Harris
L. N.
,
Leitner
W. W.
,
Ozdemirli
M.
,
Hartmann
D.
,
Raffeld
M.
,
Abu-Asab
M.
,
Byers
S.
,
Zhuang
Z.
, et al.
. (
2009
).
Novel anti-filamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma
.
Cancer Sci.
100
,
1748
1756
.
Anilkumar
G.
,
Rajasekaran
S. A.
,
Wang
S.
,
Hankinson
O.
,
Bander
N. H.
,
Rajasekaran
A. K.
(
2003
).
Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity
.
Cancer Res.
63
,
2645
2648
.
Baek
H. J.
,
Pishvaian
M. J.
,
Tang
Y.
,
Kim
T. H.
,
Yang
S.
,
Zouhairi
M. E.
,
Mendelson
J.
,
Shetty
K.
,
Kallakury
B.
,
Berry
D. L.
, et al.
. (
2011
).
Transforming growth factor-beta adaptor, beta2-spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer
.
Hepatology
53
,
1676
1684
.
Bartles
J. R.
(
2000
).
Parallel actin bundles and their multiple actin-bundling proteins
.
Curr. Opin. Cell Biol.
12
,
72
78
.
Bartles
J. R.
,
Zheng
L.
,
Li
A.
,
Wierda
A.
,
Chen
B.
(
1998
).
Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli
.
J. Cell Biol.
143
,
107
119
.
Bedolla
R. G.
,
Wang
Y.
,
Asuncion
A.
,
Chamie
K.
,
Siddiqui
S.
,
Mudryj
M. M.
,
Prihoda
T. J.
,
Siddiqui
J.
,
Chinnaiyan
A. M.
,
Mehra
R.
, et al.
. (
2009
).
Nuclear versus cytoplasmic localization of filamin A in prostate cancer: immunohistochemical correlation with metastases
.
Clin. Cancer Res.
15
,
788
796
.
Breitsprecher
D.
,
Kiesewetter
A. K.
,
Linkner
J.
,
Urbanke
C.
,
Resch
G. P.
,
Small
J. V.
,
Faix
J.
(
2008
).
Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation
.
EMBO J.
27
,
2943
2954
.
Breitsprecher
D.
,
Kiesewetter
A. K.
,
Linkner
J.
,
Vinzenz
M.
,
Stradal
T. E.
,
Small
J. V.
,
Curth
U.
,
Dickinson
R. B.
,
Faix
J.
(
2011
).
Molecular mechanism of Ena/VASP-mediated actin-filament elongation
.
EMBO J.
30
,
456
467
.
Brown
J. W.
,
McKnight
C. J.
(
2010
).
Molecular model of the microvillar cytoskeleton and organization of the brush border
.
PLoS ONE
5
,
e9406
.
Burton
E. R.
,
Gaffar
A.
,
Lee
S. J.
,
Adeshuko
F.
,
Whitney
K. D.
,
Chung
J. Y.
,
Hewitt
S. M.
,
Huang
G. S.
,
Goldberg
G. L.
,
Libutti
S. K.
, et al.
. (
2010
).
Downregulation of Filamin A interacting protein 1-like is associated with promoter methylation and induces an invasive phenotype in ovarian cancer
.
Mol. Cancer Res.
Campbell
P. J.
,
Yachida
S.
,
Mudie
L. J.
,
Stephens
P. J.
,
Pleasance
E. D.
,
Stebbings
L. A.
,
Morsberger
L. A.
,
Latimer
C.
,
McLaren
S.
,
Lin
M. L.
, et al.
. (
2010
).
The patterns and dynamics of genomic instability in metastatic pancreatic cancer
.
Nature
467
,
1109
1113
.
Castoria
G.
,
D’Amato
L.
,
Ciociola
A.
,
Giovannelli
P.
,
Giraldi
T.
,
Sepe
L.
,
Paolella
G.
,
Barone
M. V.
,
Migliaccio
A.
,
Auricchio
F.
(
2011
).
Androgen-induced cell migration: role of androgen receptor/filamin A association
.
PLoS ONE
6
,
e17218
.
Chin
Y. R.
,
Toker
A.
(
2010
).
The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration
.
Mol. Cell
38
,
333
344
.
Cramer
L. P.
,
Siebert
M.
,
Mitchison
T. J.
(
1997
).
Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force
.
J. Cell Biol.
136
,
1287
1305
.
Delanote
V.
,
Vandekerckhove
J.
,
Gettemans
J.
(
2005
).
Plastins: versatile modulators of actin organization in (patho)physiological cellular processes
.
Acta Pharmacol. Sin.
26
,
769
779
.
Di Modugno
F.
,
Bronzi
G.
,
Scanlan
M. J.
,
Del Bello
D.
,
Cascioli
S.
,
Venturo
I.
,
Botti
C.
,
Nicotra
M. R.
,
Mottolese
M.
,
Natali
P. G.
, et al.
. (
2004
).
Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response
.
Int. J. Cancer
109
,
909
918
.
Edlund
M.
,
Lotano
M. A.
,
Otey
C. A.
(
2001
).
Dynamics of alpha-actinin in focal adhesions and stress fibers visualized with alpha-actinin-green fluorescent protein
.
Cell Motil. Cytoskeleton
48
,
190
200
.
Etienne-Manneville
S.
(
2011
).
Control of polarized cell morphology and motility by adherens junctions. Semin
.
Cell Dev. Biol.
22
,
850
857
Foran
E.
,
McWilliam
P.
,
Kelleher
D.
,
Croke
D. T.
,
Long
A.
(
2006
).
The leukocyte protein L-plastin induces proliferation, invasion and loss of E-cadherin expression in colon cancer cells
.
Int. J. Cancer
118
,
2098
2104
.
Frame
M. C.
,
Patel
H.
,
Serrels
B.
,
Lietha
D.
,
Eck
M. J.
(
2010
).
The FERM domain: organizing the structure and function of FAK
.
Nat. Rev. Mol. Cell Biol.
11
,
802
814
.
Friederich
E.
,
Pringault
E.
,
Arpin
M.
,
Louvard
D.
(
1990
).
From the structure to the function of villin, an actin-binding protein of the brush border
.
BioEssays
12
,
403
408
.
Friedl
P.
,
Wolf
K.
(
2010
).
Plasticity of cell migration: a multiscale tuning model
.
J. Cell Biol.
188
,
11
19
.
Fu
L.
,
Qin
Y. R.
,
Xie
D.
,
Chow
H. Y.
,
Ngai
S. M.
,
Kwong
D. L.
,
Li
Y.
,
Guan
X. Y.
(
2007
).
Identification of alpha-actinin 4 and 67 kDa laminin receptor as stage-specific markers in esophageal cancer via proteomic approaches
.
Cancer
110
,
2672
2681
.
Gaggioli
C.
,
Hooper
S.
,
Hidalgo-Carcedo
C.
,
Grosse
R.
,
Marshall
J. F.
,
Harrington
K.
,
Sahai
E.
(
2007
).
Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells
.
Nat. Cell Biol.
9
,
1392
1400
.
Goicoechea
S. M.
,
Bednarski
B.
,
Garcia-Mata
R.
,
Prentice-Dunn
H.
,
Kim
H. J.
,
Otey
C. A.
(
2009
).
Palladin contributes to invasive motility in human breast cancer cells
.
Oncogene
28
,
587
598
.
Gonzalez
A. M.
,
Otey
C.
,
Edlund
M.
,
Jones
J. C.
(
2001
).
Interactions of a hemidesmosome component and actinin family members
.
J. Cell Sci.
114
,
4197
4206
.
Grone
H. J.
,
Weber
K.
,
Helmchen
U.
,
Osborn
M.
(
1986
).
Villin-a marker of brush border differentiation and cellular origin in human renal cell carcinoma
.
Am. J. Pathol.
124
,
294
302
.
Gurzu
S.
,
Jung
I.
,
Prantner
I.
,
Ember
I.
,
Pavai
Z.
,
Mezei
T.
(
2008
).
The expression of cytoskeleton regulatory protein Mena in colorectal lesions
.
Rom. J. Morphol. Embryol.
49
,
345
349
.
Guvakova
M. A.
,
Adams
J. C.
,
Boettiger
D.
(
2002
).
Functional role of alpha-actinin, PI 3-kinase and MEK1/2 in insulin-like growth factor I receptor kinase regulated motility of human breast carcinoma cells
.
J. Cell Sci.
115
,
4149
4165
.
Hanahan
D.
,
Weinberg
R. A.
(
2011
).
Hallmarks of cancer: the next generation
.
Cell
144
,
646
674
.
Hashimoto
Y.
,
Skacel
M.
,
Adams
J. C.
(
2005
).
Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int. J. Biochem
.
Cell Biol.
37
,
1787
1804
.
Hashimoto
Y.
,
Parsons
M.
,
Adams
J. C.
(
2007
).
Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis
.
Mol. Biol. Cell
18
,
4591
4602
.
Hashimoto
Y.
,
Kim
D. J.
,
Adams
J. C.
(
2011
).
The roles of fascins in health and disease
.
J. Pathol.
224
,
289
300
.
Heuberger
J.
,
Birchmeier
W.
(
2010
).
Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling
.
Cold Spring Harb. Perspect Biol.
2
,
a002915
.
Hirooka
S.
,
Akashi
T.
,
Ando
N.
,
Suzuki
Y.
,
Ishida
N.
,
Kurata
M.
,
Takizawa
T.
,
Kayamori
K.
,
Sakamoto
K.
,
Fujiwara
N.
, et al.
. (
2011
).
Localization of the invadopodia-related proteins actinin-1 and cortactin to matrix-contact-side cytoplasm of cancer cells in surgically resected lung adenocarcinomas
.
Pathobiology
78
,
10
23
.
Hisano
T.
,
Ono
M.
,
Nakayama
M.
,
Naito
S.
,
Kuwano
M.
,
Wada
M.
(
1996
).
Increased expression of T-plastin gene in cisplatin-resistant human cancer cells: identification by mRNA differential display
.
FEBS Lett.
397
,
101
107
.
Honda
K.
,
Yamada
T.
,
Endo
R.
,
Ino
Y.
,
Gotoh
M.
,
Tsuda
H.
,
Yamada
Y.
,
Chiba
H.
,
Hirohashi
S.
(
1998
).
Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion
.
J. Cell Biol.
140
,
1383
1393
.
Honda
K.
,
Yamada
T.
,
Seike
M.
,
Hayashida
Y.
,
Idogawa
M.
,
Kondo
T.
,
Ino
Y.
,
Hirohashi
S.
(
2004
).
Alternative splice variant of actinin-4 in small cell lung cancer
.
Oncogene
23
,
5257
5262
.
Honda
K.
,
Yamada
T.
,
Hayashida
Y.
,
Idogawa
M.
,
Sato
S.
,
Hasegawa
F.
,
Ino
Y.
,
Ono
M.
,
Hirohashi
S.
(
2005
).
Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer
.
Gastroenterology
128
,
51
62
.
Jiang
W. G.
,
Martin
T. A.
,
Lewis-Russell
J. M.
,
Douglas-Jones
A.
,
Ye
L.
,
Mansel
R. E.
(
2008
).
Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome
.
Mol. Cancer
7
,
71
.
Jiang
X.
,
Gillen
S.
,
Esposito
I.
,
Giese
N. A.
,
Michalski
C. W.
,
Friess
H.
,
Kleeff
J.
(
2010
).
Reduced expression of the membrane skeleton protein beta1-spectrin (SPTBN1) is associated with worsened prognosis in pancreatic cancer
.
Histol. Histopathol.
25
,
1497
1506
.
Kamai
T.
,
Tsujii
T.
,
Arai
K.
,
Takagi
K.
,
Asami
H.
,
Ito
Y.
,
Oshima
H.
(
2003
).
Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer
.
Clin. Cancer Res.
9
,
2632
2641
.
Kikuchi
S.
,
Honda
K.
,
Tsuda
H.
,
Hiraoka
N.
,
Imoto
I.
,
Kosuge
T.
,
Umaki
T.
,
Onozato
K.
,
Shitashige
M.
,
Yamaguchi
U.
, et al.
. (
2008
).
Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas
.
Clin. Cancer Res.
14
,
5348
5356
.
Kitisin
K.
,
Ganesan
N.
,
Tang
Y.
,
Jogunoori
W.
,
Volpe
E. A.
,
Kim
S. S.
,
Katuri
V.
,
Kallakury
B.
,
Pishvaian
M.
,
Albanese
C.
, et al.
. (
2007
).
Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation
.
Oncogene
26
,
7103
7110
.
Kwon
M.
,
Hanna
E.
,
Lorang
D.
,
He
M.
,
Quick
J. S.
,
Adem
A.
,
Stevenson
C.
,
Chung
J. Y.
,
Hewitt
S. M.
,
Zudaire
E.
, et al.
. (
2008
).
Functional characterization of filamin a interacting protein 1-like, a novel candidate for antivascular cancer therapy
.
Cancer Res.
68
,
7332
7341
.
Lane
J.
,
Martin
T. A.
,
Watkins
G.
,
Mansel
R. E.
,
Jiang
W. G.
(
2008
).
The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer
.
Int. J. Oncol.
33
,
585
593
.
Li
C.
,
Yu
S.
,
Nakamura
F.
,
Yin
S.
,
Xu
J.
,
Petrolla
A. A.
,
Singh
N.
,
Tartakoff
A.
,
Abbott
D. W.
,
Xin
W.
, et al.
. (
2009
).
Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer
.
J. Clin. Invest.
119
,
2725
2736
.
Li
A.
,
Dawson
J. C.
,
Forero-Vargas
M.
,
Spence
H. J.
,
Yu
X.
,
Konig
I.
,
Anderson
K.
,
Machesky
L. M.
(
2010a
).
The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion
.
Curr. Biol.
20
,
339
345
.
Li
C.
,
Xin
W.
,
Sy
M. S.
(
2010b
).
Binding of pro-prion to filamin A: by design or an unfortunate blunder
.
Oncogene
29
,
5329
5345
.
Li
C.
,
Yu
S.
,
Nakamura
F.
,
Pentikainen
O. T.
,
Singh
N.
,
Yin
S.
,
Xin
W.
,
Sy
M. S.
(
2010c
).
Pro-prion binds filamin A, facilitating its interaction with integrin beta1, and contributes to melanomagenesis
.
J. Biol. Chem.
285
,
30328
30339
.
Liang
L.
,
Guan
J.
,
Zeng
Y.
,
Wang
J.
,
Li
X.
,
Zhang
X.
,
Ding
Y.
(
2010
).
Down-regulation of formin-like 2 predicts poor prognosis in hepatocellular carcinoma
.
Hum. Pathol.
42
,
1603
1612
.
Loomis
P. A.
,
Zheng
L.
,
Sekerkova
G.
,
Changyaleket
B.
,
Mugnaini
E.
,
Bartles
J. R.
(
2003
).
Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo
.
J. Cell Biol.
163
,
1045
1055
.
Loy
C. J.
,
Sim
K. S.
,
Yong
E. L.
(
2003
).
Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions
.
Proc. Natl. Acad. Sci. USA
100
,
4562
4567
.
Machaidze
G.
,
Sokoll
A.
,
Shimada
A.
,
Lustig
A.
,
Mazur
A.
,
Wittinghofer
A.
,
Aebi
U.
,
Mannherz
H. G.
(
2010
).
Actin filament bundling and different nucleating effects of mouse Diaphanous-related formin FH2 domains on actin/ADF and actin/cofilin complexes
.
J. Mol. Biol.
403
,
529
545
.
Machesky
L. M.
,
Li
A.
(
2010
).
Fascin: Invasive filopodia promoting metastasis
.
Commun. Integr. Biol.
3
,
263
270
.
Maeda
O.
,
Shibata
K.
,
Hosono
S.
,
Fujiwara
S.
,
Kajiyama
H.
,
Ino
K.
,
Nawa
A.
,
Tamakoshi
K.
,
Kikkawa
F.
(
2011
).
Spectrin alphaII and betaII tetramers contribute to platinum anticancer drug resistance in ovarian serous adenocarcinoma
.
Int. J. Cancer.
130
,
113
121
.
Mattila
P. K.
,
Lappalainen
P.
(
2008
).
Filopodia: molecular architecture and cellular functions
.
Nat. Rev. Mol. Cell Biol.
9
,
446
454
.
Maul
R. S.
,
Song
Y.
,
Amann
K. J.
,
Gerbin
S. C.
,
Pollard
T. D.
,
Chang
D. D.
(
2003
).
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments
.
J. Cell Biol.
160
,
399
407
.
McConnell
R. E.
,
Tyska
M. J.
(
2007
).
Myosin-1a powers the sliding of apical membrane along microvillar actin bundles
.
J. Cell Biol.
177
,
671
681
.
Menez
J.
,
Le Maux Chansac
B.
,
Dorothee
G.
,
Vergnon
I.
,
Jalil
A.
,
Carlier
M. F.
,
Chouaib
S.
,
Mami-Chouaib
F.
(
2004
).
Mutant alpha-actinin-4 promotes tumorigenicity and regulates cell motility of a human lung carcinoma
.
Oncogene
23
,
2630
2639
.
Minamiya
Y.
,
Nakagawa
T.
,
Saito
H.
,
Matsuzaki
I.
,
Taguchi
K.
,
Ito
M.
,
Ogawa
J.
(
2005
).
Increased expression of myosin light chain kinase mRNA is related to metastasis in non-small cell lung cancer
.
Tumour Biol.
26
,
153
157
.
Moll
R.
,
Robine
S.
,
Dudouet
B.
,
Louvard
D.
(
1987
).
Villin: a cytoskeletal protein and a differentiation marker expressed in some human adenocarcinomas
.
Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.
54
,
155
169
.
Murphy
D. A.
,
Courtneidge
S. A.
(
2011
).
The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function
.
Nat. Rev. Mol. Cell Biol.
12
,
413
426
.
Nakatsuji
H.
,
Nishimura
N.
,
Yamamura
R.
,
Kanayama
H. O.
,
Sasaki
T.
(
2008
).
Involvement of actinin-4 in the recruitment of JRAB/MICAL-L2 to cell-cell junctions and the formation of functional tight junctions
.
Mol. Cell. Biol.
28
,
3324
3335
.
Narumiya
S.
,
Tanji
M.
,
Ishizaki
T.
(
2009
).
Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion
.
Cancer Metastasis Rev.
28
,
65
76
.
Nurnberg
A.
,
Kitzing
T.
,
Grosse
R.
(
2011
).
Nucleating actin for invasion
.
Nat. Rev. Cancer
11
,
177
187
.
Oslejskova
L.
,
Grigorian
M.
,
Gay
S.
,
Neidhart
M.
,
Senolt
L.
(
2008
).
The metastasis associated protein S100A4: a potential novel link to inflammation and consequent aggressive behaviour of rheumatoid arthritis synovial fibroblasts
.
Ann. Rheum. Dis.
67
,
1499
1504
.
Patrie
K. M.
,
Drescher
A. J.
,
Welihinda
A.
,
Mundel
P.
,
Margolis
B.
(
2002
).
Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1
.
J. Biol. Chem.
277
,
30183
30190
.
Pollard
T. D.
,
Cooper
J. A.
(
2009
).
Actin, a central player in cell shape and movement
.
Science
326
,
1208
1212
.
Popowicz
G. M.
,
Schleicher
M.
,
Noegel
A. A.
,
Holak
T. A.
(
2006
).
Filamins: promiscuous organizers of the cytoskeleton
.
Trends Biochem. Sci.
31
,
411
419
.
Pula
G.
,
Krause
M.
(
2008
).
Role of Ena/VASP proteins in homeostasis and disease
.
Handb. Exp. Pharmacol.
186
,
39
65
.
Ren
J.
(
1991
).
Relationship between development of microvilli on tumor cells and growth or metastatic potential of tumor cells
.
Hokkaido Igaku Zasshi
66
,
187
200
.
Ren
J.
,
Hamada
J.-I.
,
Okada
F.
,
Takeichi
N.
,
Morikawa
K.
,
Hosokawa
M.
,
Kobayashi
H.
(
1990
).
Correlation between the presence of microvilli and the growth or metastatic potential of tumor cells
.
Cancer Science
81
,
920
926
.
Roussos
E. T.
,
Goswami
S.
,
Balsamo
M.
,
Wang
Y.
,
Stobezki
R.
,
Adler
E.
,
Robinson
B. D.
,
Jones
J. G.
,
Gertler
F. B.
,
Condeelis
J. S.
, et al.
. (
2010
).
Mena invasive (Mena(INV)) and Mena11a isoforms play distinct roles in breast cancer cell cohesion and association with TMEM
.
Clin. Exp. Metastasis
28
,
515
527
.
Roussos
E. T.
,
Balsamo
M.
,
Alford
S. K.
,
Wyckoff
J. B.
,
Gligorijevic
B.
,
Wang
Y.
,
Pozzuto
M.
,
Stobezki
R.
,
Goswami
S.
,
Segall
J. E.
, et al.
. (
2011a
).
Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer
.
J. Cell Sci.
124
,
2120
2131
.
Roussos
E. T.
,
Condeelis
J. S.
,
Patsialou
A.
(
2011b
).
Chemotaxis in cancer
.
Nat. Rev. Cancer
11
,
573
587
.
Roussos
E. T.
,
Wang
Y.
,
Wyckoff
J. B.
,
Sellers
R. S.
,
Wang
W.
,
Li
J.
,
Pollard
J. W.
,
Gertler
F. B.
,
Condeelis
J. S.
(
2011c
).
Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors
.
Breast Cancer Res.
12
,
R101
.
Royer
C.
,
Lu
X.
(
2011
).
Epithelial cell polarity: a major gatekeeper against cancer?
Cell Death Differ.
18
,
1470
1477
.
Sampson
E. R.
,
Yeh
S. Y.
,
Chang
H. C.
,
Tsai
M. Y.
,
Wang
X.
,
Ting
H. J.
,
Chang
C.
(
2001
).
Identification and characterization of androgen receptor associated coregulators in prostate cancer cells
.
J. Biol. Regul. Homeost. Agents
15
,
123
129
.
Samuel
M. S.
,
Lopez
J. I.
,
McGhee
E. J.
,
Croft
D. R.
,
Strachan
D.
,
Timpson
P.
,
Munro
J.
,
Schroder
E.
,
Zhou
J.
,
Brunton
V. G.
, et al.
. (
2011
).
Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth
.
Cancer Cell
19
,
776
791
.
Sanders
A. J.
,
Ye
L.
,
Mason
M. D.
,
Jiang
W. G.
(
2010
).
The impact of EPLINalpha (Epithelial protein lost in neoplasm) on endothelial cells, angiogenesis and tumorigenesis
.
Angiogenesis
13
,
317
326
.
Sanders
A. J.
,
Martin
T. A.
,
Ye
L.
,
Mason
M. D.
,
Jiang
W. G.
(
2011
).
EPLIN is a negative regulator of prostate cancer growth and invasion
.
J. Urol.
186
,
295
301
.
Sanz-Moreno
V.
,
Gadea
G.
,
Ahn
J.
,
Paterson
H.
,
Marra
P.
,
Pinner
S.
,
Sahai
E.
,
Marshall
C. J.
(
2008
).
Rac activation and inactivation control plasticity of tumor cell movement
.
Cell
135
,
510
523
.
Schoumacher
M.
,
Goldman
R. D.
,
Louvard
D.
,
Vignjevic
D. M.
(
2010
).
Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia
.
J. Cell Biol.
189
,
541
556
.
Scott
J. A.
,
Shewan
A. M.
,
den Elzen
N. R.
,
Loureiro
J. J.
,
Gertler
F. B.
,
Yap
A. S.
(
2006
).
Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts
.
Mol. Biol. Cell
17
,
1085
1095
.
Shi
X. Y.
,
Bhagwandeen
B.
,
Leong
A. S.
(
2008
).
CDX2 and villin are useful markers of intestinal metaplasia in the diagnosis of Barrett esophagus
.
Am. J. Clin. Pathol.
129
,
571
577
.
Simpson
J. F.
,
Page
D. L.
(
1992
).
Altered expression of a structural protein (fodrin) within epithelial proliferative disease of the breast
.
Am. J. Pathol.
141
,
285
289
.
Smith
S. C.
,
Oxford
G.
,
Baras
A. S.
,
Owens
C.
,
Havaleshko
D.
,
Brautigan
D. L.
,
Safo
M. K.
,
Theodorescu
D.
(
2007
).
Expression of ral GTPases, their effectors, and activators in human bladder cancer
.
Clin. Cancer Res.
13
,
3803
3813
.
Sormunen
R.
,
Paakko
P.
,
Palovuori
R.
,
Soini
Y.
,
Lehto
V. P.
(
1994
).
Fodrin and actin in the normal, metaplastic, and dysplastic respiratory epithelium and in lung carcinoma
.
Am. J. Respir. Cell Mol. Biol.
11
,
75
84
.
Sormunen
R. T.
,
Leong
A. S.
,
Vaaraniemi
J. P.
,
Fernando
S. S.
,
Eskelinen
S. M.
(
1999
).
Immunolocalization of the fodrin, E-cadherin, and beta-catenin adhesion complex in infiltrating ductal carcinoma of the breast-comparison with an in vitro model
.
J. Pathol.
187
,
416
423
.
Suh
N.
,
Yang
X. J.
,
Tretiakova
M. S.
,
Humphrey
P. A.
,
Wang
H. L.
(
2005
).
Value of CDX2, villin, and alpha-methylacyl coenzyme A racemase immunostains in the distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma
.
Mod. Pathol.
18
,
1217
1222
.
Swaminathan
V.
,
Mythreye
K.
,
O’Brien
E. T.
,
Berchuck
A.
,
Blobe
G. C.
,
Superfine
R.
(
2011
).
Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines
.
Cancer Res.
71
,
5075
5080
.
Sy
M. S.
,
Li
C.
,
Yu
S.
,
Xin
W.
(
2010
).
The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers
.
Biomark Med.
4
,
453
464
.
Thenappan
A.
,
Li
Y.
,
Shetty
K.
,
Johnson
L.
,
Reddy
E. P.
,
Mishra
L.
(
2009
).
New therapeutics targeting colon cancer stem cells
.
Curr. Colorectal Cancer Rep.
5
,
209
.
Tuominen
H.
,
Sormunen
R.
,
Kallioinen
M.
(
1996
).
Non-erythroid spectrin (fodrin) in cutaneous tumours: diminished in cell membranes, increased in the cytoplasm
.
Br. J. Dermatol.
135
,
576
580
.
Uramoto
H.
,
Akyurek
L. M.
,
Hanagiri
T.
(
2010
).
A positive relationship between filamin and VEGF in patients with lung cancer
.
Anticancer Res.
30
,
3939
3944
.
Velkova
A.
,
Carvalho
M. A.
,
Johnson
J. O.
,
Tavtigian
S. V.
,
Monteiro
A. N.
(
2010
).
Identification of Filamin A as a BRCA1-interacting protein required for efficient DNA repair
.
Cell Cycle
9
,
1421
1433
.
Vicente-Manzanares
M.
,
Ma
X.
,
Adelstein
R. S.
,
Horwitz
A. R.
(
2009
).
Non-muscle myosin II takes centre stage in cell adhesion and migration
.
Nat. Rev. Mol. Cell. Biol.
10
,
778
790
.
Weaver
A.
(
2006
).
Invadopodia: specialized cell structures for cancer invasion
.
Clin. Exp. Metastasis
23
,
97
105
.
Weins
A.
,
Schlondorff
J. S.
,
Nakamura
F.
,
Denker
B. M.
,
Hartwig
J. H.
,
Stossel
T. P.
,
Pollak
M. R.
(
2007
).
Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity
.
Proc. Natl. Acad. Sci. USA
104
,
16080
16085
.
Welsch
T.
,
Keleg
S.
,
Bergmann
F.
,
Bauer
S.
,
Hinz
U.
,
Schmidt
J.
(
2009
).
Actinin-4 expression in primary and metastasized pancreatic ductal adenocarcinoma
.
Pancreas
38
,
968
976
.
Wolfenson
H.
,
Henis
Y. I.
,
Geiger
B.
,
Bershadsky
A. D.
(
2009
).
The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions
.
Cell Motil. Cytoskeleton
66
,
1017
1029
.
Wulfkuhle
J. D.
,
Donina
I. E.
,
Stark
N. H.
,
Pope
R. K.
,
Pestonjamasp
K. N.
,
Niswonger
M. L.
,
Luna
E. J.
(
1999
).
Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals
.
J. Cell Sci.
112
,
2125
2136
.
Wyckoff
J. B.
,
Pinner
S. E.
,
Gschmeissner
S.
,
Condeelis
J. S.
,
Sahai
E.
(
2006
).
ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo
.
Curr. Biol.
16
,
1515
1523
.
Yachida
S.
,
Jones
S.
,
Bozic
I.
,
Antal
T.
,
Leary
R.
,
Fu
B.
,
Kamiyama
M.
,
Hruban
R. H.
,
Eshleman
J. R.
,
Nowak
M. A.
, et al.
. (
2010
).
Distant metastasis occurs late during the genetic evolution of pancreatic cancer
.
Nature
467
,
1114
1117
.
Yamada
S.
,
Yanamoto
S.
,
Yoshida
H.
,
Yoshitomi
I.
,
Kawasaki
G.
,
Mizuno
A.
,
Nemoto
T. K.
(
2010
).
RNAi-mediated down-regulation of alpha-actinin-4 decreases invasion potential in oral squamous cell carcinoma
.
Int. J. Oral Maxillofac. Surg.
39
,
61
67
.
Yamamoto
S.
,
Tsuda
H.
,
Honda
K.
,
Kita
T.
,
Takano
M.
,
Tamai
S.
,
Inazawa
J.
,
Yamada
T.
,
Matsubara
O.
(
2007
).
Actinin-4 expression in ovarian cancer: a novel prognostic indicator independent of clinical stage and histological type
.
Mod. Pathol.
20
,
1278
1285
.
Yamamoto
S.
,
Tsuda
H.
,
Honda
K.
,
Onozato
K.
,
Takano
M.
,
Tamai
S.
,
Imoto
I.
,
Inazawa
J.
,
Yamada
T.
,
Matsubara
O.
(
2009
).
Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance
.
Mod. Pathol.
22
,
499
507
.
Younes
M.
,
Harris
A. S.
,
Morrow
J. S.
(
1989
).
Fodrin as a differentiation marker. Redistributions in colonic neoplasia
.
Am. J. Pathol.
135
,
1197
1212
.
Yuan
C. B.
,
Zhao
R.
,
Wan
F. J.
,
Cai
J. H.
,
Ji
X. P.
,
Yu
Y. Y.
(
2010
).
[Significance of plasmic L-plastin levels in the diagnosis of colorectal cancer]
.
Chinese J. Gastrointest. Surg.
13
,
687
690
.
Zhang
M. Q.
,
Lin
F.
,
Hui
P.
,
Chen
Z. M.
,
Ritter
J. H.
,
Wang
H. L.
(
2007
).
Expression of mucins, SIMA, villin, and CDX2 in small-intestinal adenocarcinoma
.
Am. J. Clin. Pathol.
128
,
808
816
.
Zhang
S.
,
Wang
X.
,
Osunkoya
A. O.
,
Iqbal
S.
,
Wang
Y.
,
Chen
Z.
,
Muller
S.
,
Josson
S.
,
Coleman
I. M.
,
Nelson
P. S.
, et al.
. (
2010
).
EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis
.
Oncogene
30
,
4941
4952
.
Zhong
Z.
,
Yeow
W. S.
,
Zou
C.
,
Wassell
R.
,
Wang
C.
,
Pestell
R. G.
,
Quong
J. N.
,
Quong
A. A.
(
2010
).
Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells
.
Cancer Res.
70
,
2105
2114
.
Zhou
A. X.
,
Toylu
A.
,
Nallapalli
R. K.
,
Nilsson
G.
,
Atabey
N.
,
Heldin
C. H.
,
Boren
J.
,
Bergo
M. O.
,
Akyurek
L. M.
(
2011
).
Filamin a mediates HGF/c-MET signaling in tumor cell migration
.
Int. J. Cancer
128
,
839
846
.