Microtubules are highly dynamic hollow tubes that are involved in many vital cellular activities, including maintenance of cell shape, division, migration and intracellular transport. They are assembled from heterodimers of α- and β-tubulin that align in a head-to-tail fashion. Microtubules are, thus, intrinsically polar because they contain two structurally distinct ends: a slow-growing minus end, exposing α-tubulin subunits; and a fast-growing plus end, exposing β-tubulin subunits (for a review, see Nogales and Wang, 2006). In mammalian cells, microtubule minus ends are often stably anchored, whereas the plus ends are highly dynamic and stochastically switch between phases of growth and shrinkage, a process that is powered by GTP hydrolysis.

Microtubule plus-end tracking proteins (+TIPs) are a structurally and functionally diverse group of proteins that are distinguished by their specific accumulation at microtubule plus ends (Mimori-Kiyosue et al., 2000; Perez et al., 1999; Schuyler and Pellman, 2001). +TIPs typically target growing but not shrinking microtubule ends; however +TIP association with depolymerizing ends can occur and, in some organisms such as budding yeast, is even quite common. In this Cell Science at a Glance article we review and illustrate the current knowledge of these peculiar proteins, summarize their structural and functional properties, and discuss the proposed molecular mechanisms that they use to track microtubule ends.

The first reported +TIP was cytoplasmic linker protein of 170 kDa (CLIP-170, officially known as CLIP1) (Perez et al., 1999). Since its discovery, more than 20 different +TIP families have been identified. +TIPs are usually multidomain and/or multisubunit proteins that range in size from a few hundred up to thousands of residues. They can be cytoplasmic or membrane bound, and comprise motor and non-motor proteins (for a review, see Akhmanova and Steinmetz, 2008). +TIPs can be classified on the basis of prominent structural elements that enable them to interact with each other and with microtubules; however, in some cases, +TIPs combine features characteristic of several +TIP classes.

End-binding (EB) family proteins contain a highly conserved N-terminal domain that adopts a calponin homology (CH) fold (Korenbaum and Rivero, 2002) and is responsible for microtubule binding (Hayashi and Ikura, 2003). In mammalian EB1 and EB3, a CH domain with the adjacent linker sequence is sufficient for plus-end tracking (Komarova et al., 2009; Skube et al., 2010); however dimerization is important for microtubule plus-end recognition by their yeast homologue Bim1 (Zimniak et al., 2009). The C terminus of EB proteins harbors an α-helical coiled-coil domain that mediates parallel dimerization of EB monomers (Honnappa et al., 2005; Slep et al., 2005). It further comprises the unique EB homology (EBH) domain and an acidic tail encompassing a C-terminal EEY/F motif, reminiscent of those of α-tubulin and CLIP-170 (Komarova et al., 2005; Miller et al., 2006; Weisbrich et al., 2007). Notably, plant EB proteins lack the EEY/F motif, and some EB family members, such as EB1c in Arabidopsis thaliana, exhibit a positively charged C-terminus that is responsible for nuclear localization (Komaki et al., 2010). Both the EBH domain and the EEY/F motif enable the EB proteins to physically interact with an array of +TIPs to recruit them to microtubule ends.

The cytoskeleton-associated protein glycine-rich (CAP-Gly) domain is a small globular module that contains a unique conserved hydrophobic cavity and several characteristic glycine residues (Li et al., 2002; Saito et al., 2004). CAP-Gly domains use their hydrophobic cavity to confer interactions with microtubules and EB proteins by specifically recognizing C-terminal EEY/F sequence motifs (Honnappa et al., 2006; Mishima et al., 2007; Weisbrich et al., 2007). Prominent examples are the CLIP proteins and the large subunit of the dynactin complex p150glued. A single CAP-Gly domain of CLIP-170, together with the adjacent serine-rich region, can track growing microtubule ends (Gupta et al., 2009).

The largest group of +TIPs comprises large and complex, often multidomain, proteins containing low-complexity sequence regions that are rich in basic, serine and proline (basic-S/P) residues. They share the small four-residue motif Ser-x-Ile-Pro (SxIP, where x denotes any amino acid), which is specifically recognized by the EBH domain of EB proteins (Honnappa et al., 2009). Prominent examples of this diverse class of +TIPs are the adenomatous polyposis coli (APC) tumour suppressor, the spectraplakin microtubule–actin crosslinking factor (MACF) and the mitotic centromere-associated kinesin (MCAK). Because SxIP motifs are very short, they can be easily acquired or lost during evolution; for example, CDK5RAP2, a protein implicated in microcephaly, contains an EB1-binding SxIP motif in humans and dogs but not in rodents (Fong et al., 2009).

Proteins with TOG or TOG-like domains (named after their discovery in the protein ch-TOG) include members of the XMAP215/Dis1 family and the CLASPs. Tandemly arranged TOG domains mediate binding to tubulin and are probably responsible for microtubule growth-promoting activity of these proteins (Al-Bassam et al., 2006; Brouhard et al., 2008; Slep and Vale, 2007) (for a review, see Slep, 2009a). Additional domains, such as SxIP motifs in CLASPs, are required for targeting of these proteins to microtubule plus ends and other subcellular sites (Mimori-Kiyosue et al., 2005).

Both microtubule plus- and minus-end-directed motor proteins can track growing microtubule ends. Examples are the yeast kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside the microtubule-binding motor domains, such as the SxIP motif of MCAK (Honnappa et al., 2009), might be needed for the microtubule tip-tracking behavior of these proteins.

Finally, there are other +TIPs that cannot be grouped in one of the five classes discussed above. A prominent example is the Dam1 complex – an assembly of ten subunits that form rings of 16-fold symmetry (Lampert et al., 2010; Wang et al., 2007) – and which is found in yeast but not in higher organisms. Other examples are the Saccharomyces cerevisiae protein Kar9 (Liakopoulos et al., 2003; Moore and Miller, 2007), and the highly conserved cytoplasmic dynein accessory factor lissencephaly-1 protein (Lis1) (for a review, see Vallee and Tsai, 2006).

One hallmark of +TIPs is that they form dynamic interaction networks that rely on a limited number of protein modules and linear sequence motifs, such as the CH, EBH and CAP-Gly domains, and EEY/F and SxIP motifs. These elements mediate the interaction with each other and microtubules, and typically display affinities in the low micromolar range (Gupta et al., 2009; Mishima et al., 2007; Weisbrich et al., 2007).

EB proteins are now generally accepted to represent core components of +TIP networks because they autonomously track growing microtubule plus ends independently of any binding partners (Bieling et al., 2008; Bieling et al., 2007; Dixit et al., 2009; Komarova et al., 2009; Zimniak et al., 2009). Moreover, EB proteins directly associate with almost all other known +TIPs and, by doing so, target them to growing microtubule plus ends (for reviews, see Akhmanova and Steinmetz, 2008; Slep, 2009b). SxIP motifs act as a general ‘microtubule tip localization signal’ (MtLS) by interacting with the EBH domain of EB proteins (Honnappa et al., 2009). Similarly, EEY/F motifs of EB proteins and α-tubulin guide CAP-Gly proteins to microtubule tips (Bieling et al., 2008; Dixit et al., 2009). Both the EBH-SxIP and the CAP-Gly-EEY/F interactions have been analyzed to high resolution (Hayashi et al., 2007; Honnappa et al., 2009; Honnappa et al., 2006; Mishima et al., 2007; Plevin et al., 2008; Weisbrich et al., 2007). The two distinct binding modes were revealed through these structures and offer a molecular basis for understanding the majority of known interaction nodes in dynamic +TIP networks.

The EBH-SxIP and CAP-Gly-EEY/F interactions can be regulated by post-translational modifications. Phosphorylation of Ser residues in the vicinity of the SxIP motifs (Honnappa et al., 2009; Kumar et al., 2009; Watanabe et al., 2009) disrupts their interaction with EB proteins, whereas the removal of the C-terminal Tyr of α-tubulin has a negative effect on the accumulation of CAP-Gly proteins at microtubule tips (Bieling et al., 2008; Peris et al., 2006).

Because +TIPs form complex interaction networks, in-vitro reconstitution studies using purified components are required to determine whether plus-end tracking behavior is an autonomous property of a particular protein. Using this approach, it was shown that some +TIPs can associate with growing microtubule ends in the absence of any additional factors. Autonomous processive microtubule tip tracking, whereby the protein stays bound to the microtubule end during multiple rounds of subunit addition, has been described for XMAP215 (Brouhard et al., 2008). Another example is the yeast Dam1 complex, which continuously tracks both growing and shrinking microtubule ends, possibly by using a form of a diffusion-based mechanism (Lampert et al., 2010). Finally, various EB family members from different species bind to growing but not shortening plus- and minus ends in vitro (Bieling et al., 2008; Bieling et al., 2007; Dixit et al., 2009; Komarova et al., 2009; Zimniak et al., 2009). Unlike XMAP215, EB proteins exchange rapidly at the microtubule end, undergoing several cycles of binding and unbinding events before the growing microtubule end converts into the mature lattice (Bieling et al., 2007; Dragestein et al., 2008).

It is currently unknown which structural features of the growing microtubule end are recognized by autonomously tracking +TIPs; however, these might include the GTP cap at the end of the freshly polymerized microtubule (Lampert et al., 2010; Zanic et al., 2009) or some specific protofilament arrangement (des Georges et al., 2008; Sandblad et al., 2006) (for a review, see Coquelle et al., 2009). Another attractive idea is that autonomously tracking +TIPs co-polymerize with tubulin subunits and then get released gradually from the mature lattice (Folker et al., 2005); this mechanism has not found support in the in-vitro reconstitution studies using EB and CLIP homologs of fission yeast and vertebrates (Bieling et al., 2007; Bieling et al., 2008; Dixit et al., 2009), but might still apply to some other proteins.

Most +TIPs track the ends of growing microtubules in a non-autonomous manner. STIM1 and CDK5RAP2, for example, hitchhike on microtubule tip-bound EB proteins (Fong et al., 2009; Grigoriev et al., 2008; Honnappa et al., 2009). Others, such as CLIP-170, recognize more complex binding sites that encompass domains of both EB proteins and tubulin (Bieling et al., 2008; Gupta et al., 2010). Because EB proteins rapidly exchange at microtubule tips, accumulation of their partners at microtubule ends is also dynamic, and mostly depends on three-dimensional protein diffusion in the cytosol. However, one-dimensional diffusion along the microtubule lattice might also occur, as is the case for MCAK (Helenius et al., 2006). In the case of STIM1, a transmembrane +TIP, two-dimensional diffusion in the membrane is required to enable accumulation at microtubule tips (Grigoriev et al., 2008).

For EB proteins and their partners that decorate the freshly polymerized microtubule tip, the specificity for microtubule plus ends – as opposed to minus ends – is explained by the fact that, in vivo, minus ends never grow in cells. By contrast, the exclusive accumulation at microtubule plus ends both in vitro and in vivo is observed in systems in which plus-end-directed kinesins are involved. Among the best-studied examples are the yeast CLIP-170 orthologs Bik1 and Tip1, which are concentrated at microtubule tips by the kinesins Kip2 and Tea2, respectively (Bieling et al., 2007; Busch et al., 2004; Carvalho et al., 2004; Miller et al., 2006). It should be noted that kinesins, either alone or together with their binding partners, will track microtubule ends only if they do not dissociate immediately from microtubule ends but are retained on them, either because of interactions with other +TIPs or through their intrinsic autonomous tip-tracking properties (Varga et al., 2009).

Localization at microtubule ends makes +TIPs ideally suited to control different aspects of microtubule dynamics; for example, by promoting growth through catalyzing the addition of tubulin to microtubule ends (XMAP215) (Brouhard et al., 2008), inducing catastrophes (MCAK) (Kline-Smith and Walczak, 2002) or rescues (CLIP-170) (Komarova et al., 2002), or by stabilizing microtubules at the cell cortex (CLASPs, APC, MACF) (Kodama et al., 2003; Mimori-Kiyosue et al., 2005; Wen et al., 2004) (for reviews, see Heald and Nogales, 2002; van der Vaart et al., 2009). For some +TIPs, the exact effect on microtubule dynamics varies depending on the assay conditions. EB proteins usually promote microtubule dynamics and growth, and suppress catastrophes in cells (Busch and Brunner, 2004; Komarova et al., 2009; Tirnauer et al., 2002). However, the results of in-vitro experiments with different EB family members have been controversial, because changes in growth and shrinkage rates, induction and suppression of catastrophes, or a complete lack of influence on some or all microtubule dynamics parameters have been reported (Bieling et al., 2008; Bieling et al., 2007; Dixit et al., 2009; Katsuki et al., 2009; Komarova et al., 2009; Manna et al., 2007; Vitre et al., 2008). Taken together, these studies suggest that the regulation of microtubule dynamics is an important +TIP function, but the underlying molecular mechanisms are still poorly understood.

In addition to regulating microtubule dynamics, +TIPs form links between microtubule ends and other cellular structures. For example, they can attach microtubule tips to the cell cortex by binding to plasma-membrane-associated proteins – such as the CLASP–LL5β complex (Lansbergen et al., 2006) – or by interacting with actin fibers to which some +TIPs, such as spectraplakins, can bind directly (Applewhite et al., 2010; Kodama et al., 2003), whereas others (e.g. CLIP-170) might require intermediary factors (Fukata et al., 2002). +TIPs also participate in microtubule-actin crosstalk. The Tea1–Tea4 complex, for example, controls actin organization through formins in budding yeast (Martin et al., 2005), whereas CLIP-170 – which also acts in concert with a formin – controls actin polymerization, a process essential for phagocytosis in mammalian cells (Lewkowicz et al., 2008). The EB1 partner RhoGEF2 regulates contractility of epithelial cells in flies (Rogers et al., 2004), and p140Cap acting together with EB3 affects F-actin organization in dendritic spines of neurons (Jaworski et al., 2009). Furthermore, +TIP complexes are used for myosin-based transport of microtubule ends, e.g. Kar9-Myo2 in budding yeast (Liakopoulos et al., 2003).

+TIPs also have an important role in coordinating microtubule attachment and dynamics at mitotic kinetochores – e.g. Dam1, CLIP-170, CLASPs, dynein (for a review, see Maiato et al., 2004) – and participate in the extension of endoplasmic reticulum tubules together with growing microtubule ends (STIM1) (Grigoriev et al., 2008). +TIPs also contribute to loading cargo for minus-end-directed microtubule transport (dynactin, CLIP-170) (Lomakin et al., 2009; Vaughan et al., 2002) and in transporting microtubule ends along other microtubules to promote organization of specialized microtubule arrays, such as mitotic spindles (Goshima et al., 2005) and bipolar microtubule bundles in fission yeast (Janson et al., 2007).

Finally, many +TIPs accumulate at centrosomes and other microtubule organizing centers where they might participate in microtubule nucleation and anchoring (for a review, see Bettencourt-Dias and Glover, 2007). The exact role +TIPs have at the centrosomes awaits to be explored.

Growing microtubule ends have emerged as remarkably complex cellular sites where microtubule dynamics can be coordinated with actin polymerization, cargo movement and remodeling of cell membranes. These processes are tightly regulated by a diverse set of proteins that form a dynamic and flexible interaction network. In most cases, the exact role of the microtubule plus-end tracking behavior for +TIP function has not been established and still needs to be examined. Remarkably, some of the key microtubule tip-targeting motifs are very short and simple, and can be acquired easily during evolution. We thus expect that the list of +TIPs is incomplete and that many more protein families showing this peculiar localization behavior will be discovered in the near future.

A.A. is supported by the Netherlands Organization for Scientific Research grants ALW-VICI and ZonMW-TOP. M.O.S. is supported by grants from the Swiss National Science Foundation.

This article is part of a Minifocus on microtubule dynamics. For further reading, please see related articles: ‘Kinesins at a glance’ by Sharyn A. Endow et al., (J. Cell Sci. 123, pp. 3420-3424), ‘Tubulin depolymerization may be an ancient biological motor process’ by J. Richard McIntosh et al. (J. Cell Sci. 123, pp. 3425-3434), ‘Towards a quantitative understanding of mitotic spindle assembly and mechanics’ by Alex Mogilner and Erin Craig (J. Cell Sci. 123, pp. 3435-3445) and ‘Post-translational modifications of microtubules’ by Dorota Wloga and Jacek Gaertig (J. Cell Sci. 123, pp. 3447-3455).

Supplementary material available online at http://jcs.biologists.org/cgi/content/full/123/20/3415/DC1

Akhmanova
A.
,
Steinmetz
M. O.
(
2008
).
Tracking the ends: a dynamic protein network controls the fate of microtubule tips
.
Nat. Rev. Mol. Cell Biol.
9
,
309
-
322
.
Al-Bassam
J.
,
van Breugel
M.
,
Harrison
S. C.
,
Hyman
A.
(
2006
).
Stu2p binds tubulin and undergoes an open-to-closed conformational change
.
J. Cell Biol.
172
,
1009
-
1022
.
Applewhite
D. A.
,
Grode
K. D.
,
Keller
D.
,
Zadeh
A.
,
Slep
K. C.
,
Rogers
S. L.
(
2010
).
The spectraplakin short stop is an actin-microtubule crosslinker that contributes to organization of the microtubule network
.
Mol. Biol. Cell
21
,
1714
-
1724
.
Bettencourt-Dias
M.
,
Glover
D. M.
(
2007
).
Centrosome biogenesis and function: centrosomics brings new understanding
.
Nat. Rev. Mol. Cell Biol.
8
,
451
-
463
.
Bieling
P.
,
Laan
L.
,
Schek
H.
,
Munteanu
E. L.
,
Sandblad
L.
,
Dogterom
M.
,
Brunner
D.
,
Surrey
T.
(
2007
).
Reconstitution of a microtubule plus-end tracking system in vitro
.
Nature
450
,
1100
-
1105
.
Bieling
P.
,
Kandels-Lewis
S.
,
Telley
I. A.
,
van Dijk
J.
,
Janke
C.
,
Surrey
T.
(
2008
).
CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites
.
J. Cell Biol.
183
,
1223
-
1233
.
Brouhard
G. J.
,
Stear
J. H.
,
Noetzel
T. L.
,
Al-Bassam
J.
,
Kinoshita
K.
,
Harrison
S. C.
,
Howard
J.
,
Hyman
A. A.
(
2008
).
XMAP215 is a processive microtubule polymerase
.
Cell
132
,
79
-
88
.
Busch
K. E.
,
Brunner
D.
(
2004
).
The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules
.
Curr. Biol.
14
,
548
-
559
.
Busch
K. E.
,
Hayles
J.
,
Nurse
P.
,
Brunner
D.
(
2004
).
Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules
.
Dev. Cell
6
,
831
-
843
.
Carvalho
P.
,
Gupta
M. L.
Jr
,
Hoyt
M. A.
,
Pellman
D.
(
2004
).
Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation
.
Dev. Cell
6
,
815
-
829
.
Coquelle
F. M.
,
Vitre
B.
,
Arnal
I.
(
2009
).
Structural basis of EB1 effects on microtubule dynamics
.
Biochem. Soc. Trans.
37
,
997
-
1001
.
des Georges
A.
,
Katsuki
M.
,
Drummond
D. R.
,
Osei
M.
,
Cross
R. A.
,
Amos
L. A.
(
2008
).
Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice
.
Nat. Struct. Mol. Biol.
15
,
1102
-
1108
.
Dixit
R.
,
Barnett
B.
,
Lazarus
J. E.
,
Tokito
M.
,
Goldman
Y. E.
,
Holzbaur
E. L.
(
2009
).
Microtubule plus-end tracking by CLIP-170 requires EB1
.
Proc. Natl. Acad. Sci. USA
106
,
492
-
497
.
Dragestein
K. A.
,
van Cappellen
W. A.
,
van Haren
J.
,
Tsibidis
G. D.
,
Akhmanova
A.
,
Knoch
T. A.
,
Grosveld
F.
,
Galjart
N.
(
2008
).
Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends
.
J. Cell Biol.
180
,
729
-
737
.
Folker
E. S.
,
Baker
B. M.
,
Goodson
H. V.
(
2005
).
Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior
.
Mol. Biol. Cell
16
,
5373
-
5384
.
Fong
K. W.
,
Hau
S. Y.
,
Kho
Y. S.
,
Jia
Y.
,
He
L.
,
Qi
R. Z.
(
2009
).
Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics
.
Mol. Biol. Cell.
20
,
3660
-
3670
.
Fukata
M.
,
Watanabe
T.
,
Noritake
J.
,
Nakagawa
M.
,
Yamaga
M.
,
Kuroda
S.
,
Matsuura
Y.
,
Iwamatsu
A.
,
Perez
F.
,
Kaibuchi
K.
(
2002
).
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170
.
Cell
109
,
873
-
885
.
Goshima
G.
,
Nedelec
F.
,
Vale
R. D.
(
2005
).
Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins
.
J. Cell Biol.
171
,
229
-
240
.
Grigoriev
I.
,
Gouveia
S. M.
,
van der Vaart
B.
,
Demmers
J.
,
Smyth
J. T.
,
Honnappa
S.
,
Splinter
D.
,
Steinmetz
M. O.
,
Putney
J. W.
Jr
,
Hoogenraad
C. C.
, et al. 
. (
2008
).
STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER
.
Curr. Biol.
18
,
177
-
182
.
Gupta
K. K.
,
Paulson
B. A.
,
Folker
E. S.
,
Charlebois
B.
,
Hunt
A. J.
,
Goodson
H. V.
(
2009
).
Minimal plus-end tracking unit of the cytoplasmic linker protein CLIP-170
.
J. Biol. Chem.
284
,
6735
-
6742
.
Gupta
K. K.
,
Joyce
M. V.
,
Slabbekoorn
A. R.
,
Zhu
Z. C.
,
Paulson
B. A.
,
Boggess
B.
,
Goodson
H. V.
(
2010
).
Probing interactions between CLIP-170, EB1, and microtubules
.
J. Mol. Biol.
395
,
1049
-
1062
.
Hayashi
I.
,
Ikura
M.
(
2003
).
Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1)
.
J. Biol. Chem.
278
,
36430
-
36434
.
Hayashi
I.
,
Plevin
M. J.
,
Ikura
M.
(
2007
).
CLIP-170 autoinhibition mimics intermolecular interactions with p150Glued or EB1
.
Nat. Struct. Mol. Biol.
10
,
980
-
981
.
Heald
R.
,
Nogales
E.
(
2002
).
Microtubule dynamics
.
J. Cell Sci.
115
,
3
-
4
.
Helenius
J.
,
Brouhard
G.
,
Kalaidzidis
Y.
,
Diez
S.
,
Howard
J.
(
2006
).
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
.
Nature
441
,
115
-
119
.
Honnappa
S.
,
John
C. M.
,
Kostrewa
D.
,
Winkler
F. K.
,
Steinmetz
M. O.
(
2005
).
Structural insights into the EB1-APC interaction
.
EMBO J.
24
,
261
-
269
.
Honnappa
S.
,
Okhrimenko
O.
,
Jaussi
R.
,
Jawhari
H.
,
Jelesarov
I.
,
Winkler
F. K.
,
Steinmetz
M. O.
(
2006
).
Key interaction modes of dynamic +TIP networks
.
Mol. Cell
23
,
663
-
671
.
Honnappa
S.
,
Gouveia
S. M.
,
Weisbrich
A.
,
Damberger
F. F.
,
Bhavesh
N. S.
,
Jawhari
H.
,
Grigoriev
I.
,
van Rijssel
F. J.
,
Buey
R. M.
,
Lawera
A.
, et al. 
. (
2009
).
An EB1-binding motif acts as a microtubule tip localization signal
.
Cell
138
,
366
-
376
.
Janson
M. E.
,
Loughlin
R.
,
Loiodice
I.
,
Fu
C.
,
Brunner
D.
,
Nedelec
F. J.
,
Tran
P. T.
(
2007
).
Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast
.
Cell
128
,
357
-
368
.
Jaworski
J.
,
Kapitein
L. C.
,
Gouveia
S. M.
,
Dortland
B. R.
,
Wulf
P. S.
,
Grigoriev
I.
,
Camera
P.
,
Spangler
S. A.
,
Di Stefano
P.
,
Demmers
J.
, et al. 
. (
2009
).
Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity
.
Neuron
61
,
85
-
100
.
Katsuki
M.
,
Drummond
D. R.
,
Osei
M.
,
Cross
R. A.
(
2009
).
Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue
.
J. Biol. Chem.
284
,
29246
-
29250
.
Kline-Smith
S. L.
,
Walczak
C. E.
(
2002
).
The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells
.
Mol. Biol. Cell
13
,
2718
-
2731
.
Kodama
A.
,
Karakesisoglou
I.
,
Wong
E.
,
Vaezi
A.
,
Fuchs
E.
(
2003
).
ACF7: an essential integrator of microtubule dynamics
.
Cell
115
,
343
-
354
.
Komaki
S.
,
Abe
T.
,
Coutuer
S.
,
Inze
D.
,
Russinova
E.
,
Hashimoto
T.
(
2010
).
Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis
.
J. Cell Sci.
123
,
451
-
459
.
Komarova
Y. A.
,
Akhmanova
A. S.
,
Kojima
S.
,
Galjart
N.
,
Borisy
G. G.
(
2002
).
Cytoplasmic linker proteins promote microtubule rescue in vivo
.
J. Cell Biol.
159
,
589
-
599
.
Komarova
Y.
,
Lansbergen
G.
,
Galjart
N.
,
Grosveld
F.
,
Borisy
G. G.
,
Akhmanova
A.
(
2005
).
EB1 and EB3 control CLIP dissociation from the ends of growing microtubules
.
Mol. Biol. Cell
16
,
5334
-
5345
.
Komarova
Y.
,
De Groot
C. O.
,
Grigoriev
I.
,
Gouveia
S. M.
,
Munteanu
E. L.
,
Schober
J. M.
,
Honnappa
S.
,
Buey
R. M.
,
Hoogenraad
C. C.
,
Dogterom
M.
, et al. 
. (
2009
).
Mammalian end binding proteins control persistent microtubule growth
.
J. Cell Biol.
184
,
691
-
706
.
Korenbaum
E.
,
Rivero
F.
(
2002
).
Calponin homology domains at a glance
.
J. Cell Sci.
115
,
3543
-
3545
.
Kumar
P.
,
Lyle
K. S.
,
Gierke
S.
,
Matov
A.
,
Danuser
G.
,
Wittmann
T.
(
2009
).
GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment
.
J. Cell Biol.
184
,
895
-
908
.
Lampert
F.
,
Hornung
P.
,
Westermann
S.
(
2010
).
The Dam1 complex confers microtubule plus end-racking activity to the Ndc80 kinetochore complex
.
J. Cell Biol.
189
,
641
-
649
.
Lansbergen
G.
,
Grigoriev
I.
,
Mimori-Kiyosue
Y.
,
Ohtsuka
T.
,
Higa
S.
,
Kitajima
I.
,
Demmers
J.
,
Galjart
N.
,
Houtsmuller
A. B.
,
Grosveld
F.
, et al. 
. (
2006
).
CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta
.
Dev. Cell
11
,
21
-
32
.
Lewkowicz
E.
,
Herit
F.
,
Le Clainche
C.
,
Bourdoncle
P.
,
Perez
F.
,
Niedergang
F.
(
2008
).
The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis
.
J. Cell Biol.
183
,
1287
-
1298
.
Li
S.
,
Finley
J.
,
Liu
Z. J.
,
Qiu
S. H.
,
Chen
H.
,
Luan
C. H.
,
Carson
M.
,
Tsao
J.
,
Johnson
D.
,
Lin
G.
, et al. 
. (
2002
).
Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain
.
J. Biol. Chem.
277
,
48596
-
48601
.
Liakopoulos
D.
,
Kusch
J.
,
Grava
S.
,
Vogel
J.
,
Barral
Y.
(
2003
).
Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment
.
Cell
112
,
561
-
574
.
Lomakin
A. J.
,
Semenova
I.
,
Zaliapin
I.
,
Kraikivski
P.
,
Nadezhdina
E.
,
Slepchenko
B. M.
,
Akhmanova
A.
,
Rodionov
V.
(
2009
).
CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport
.
Dev. Cell
17
,
323
-
333
.
Maiato
H.
,
Sampaio
P.
,
Sunkel
C. E.
(
2004
).
Microtubule-associated proteins and their essential roles during mitosis
.
Int. Rev. Cytol.
241
,
53
-
153
.
Manna
T.
,
Honnappa
S.
,
Steinmetz
M. O.
,
Wilson
L.
(
2007
).
Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150(Glued)
.
Biochemistry
284
,
15640
-
15649
.
Martin
S. G.
,
McDonald
W. H.
,
Yates
J. R.
3rd
,
Chang
F.
(
2005
).
Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity
.
Dev. Cell
8
,
479
-
491
.
Miller
R. K.
,
D'Silva
S.
,
Moore
J. K.
,
Goodson
H. V.
(
2006
).
The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast
.
Curr. Top. Dev. Biol.
76
,
49
-
87
.
Mimori-Kiyosue
Y.
,
Shiina
N.
,
Tsukita
S.
(
2000
).
The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules
.
Curr. Biol.
10
,
865
-
868
.
Mimori-Kiyosue
Y.
,
Grigoriev
I.
,
Lansbergen
G.
,
Sasaki
H.
,
Matsui
C.
,
Severin
F.
,
Galjart
N.
,
Grosveld
F.
,
Vorobjev
I.
,
Tsukita
S.
, et al. 
. (
2005
).
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
.
J. Cell Biol.
168
,
141
-
153
.
Mishima
M.
,
Maesaki
R.
,
Kasa
M.
,
Watanabe
T.
,
Fukata
M.
,
Kaibuchi
K.
,
Hakoshima
T.
(
2007
).
Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition
.
Proc. Natl. Acad. Sci. USA
104
,
10346
-
10351
.
Moore
J. K.
,
Miller
R. K.
(
2007
).
The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast
.
Mol. Biol. Cell
18
,
1187
-
1202
.
Nogales
E.
,
Wang
H. W.
(
2006
).
Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives
.
Curr. Opin. Struct. Biol.
16
,
221
-
229
.
Perez
F.
,
Diamantopoulos
G. S.
,
Stalder
R.
,
Kreis
T. E.
(
1999
).
CLIP-170 highlights growing microtubule ends in vivo
.
Cell
96
,
517
-
527
.
Peris
L.
,
Thery
M.
,
Faure
J.
,
Saoudi
Y.
,
Lafanechere
L.
,
Chilton
J. K.
,
Gordon-Weeks
P.
,
Galjart
N.
,
Bornens
M.
,
Wordeman
L.
, et al. 
. (
2006
).
Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends
.
J. Cell Biol.
174
,
839
-
849
.
Plevin
M. J.
,
Hayashi
I.
,
Ikura
M.
(
2008
).
Characterization of a conserved “threonine clasp” in CAP-Gly domains: role of a functionally critical OH/pi interaction in protein recognition
.
J. Am. Chem. Soc.
130
,
14918
-
14919
.
Rogers
S. L.
,
Wiedemann
U.
,
Hacker
U.
,
Turck
C.
,
Vale
R. D.
(
2004
).
Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner
.
Curr. Biol.
14
,
1827
-
1833
.
Saito
K.
,
Kigawa
T.
,
Koshiba
S.
,
Sato
K.
,
Matsuo
Y.
,
Sakamoto
A.
,
Takagi
T.
,
Shirouzu
M.
,
Yabuki
T.
,
Nunokawa
E.
, et al. 
. (
2004
).
The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma
.
Structure
12
,
1719
-
1728
.
Sandblad
L.
,
Busch
K. E.
,
Tittmann
P.
,
Gross
H.
,
Brunner
D.
,
Hoenger
A.
(
2006
).
The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam
.
Cell
127
,
1415
-
1424
.
Schuyler
S. C.
,
Pellman
D.
(
2001
).
Microtubule “plus-end-tracking proteins”: the end is just the beginning
.
Cell
105
,
421
-
424
.
Skube
S. B.
,
Chaverri
J. M.
,
Goodson
H. V.
(
2010
).
Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo
.
Cytoskeleton
67
,
1
-
12
.
Slep
K. C.
(
2009a
).
The role of TOG domains in microtubule plus end dynamics
.
Biochem. Soc. Trans.
37
,
1002
-
1006
.
Slep
K. C.
(
2009b
).
Structural and mechanistic insights into microtubule end-binding proteins
.
Curr. Opin. Cell Biol.
22
,
88
-
95
.
Slep
K. C.
,
Vale
R. D.
(
2007
).
Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1
.
Mol. Cell
27
,
976
-
991
.
Slep
K. C.
,
Rogers
S. L.
,
Elliott
S. L.
,
Ohkura
H.
,
Kolodziej
P. A.
,
Vale
R. D.
(
2005
).
Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end
.
J. Cell Biol.
168
,
587
-
598
.
Tirnauer
J. S.
,
Grego
S.
,
Salmon
E. D.
,
Mitchison
T. J.
(
2002
).
EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules
.
Mol. Biol. Cell
13
,
3614
-
3626
.
Vallee
R. B.
,
Tsai
J. W.
(
2006
).
The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development
.
Genes Dev.
20
,
1384
-
1393
.
van der Vaart
B.
,
Akhmanova
A.
,
Straube
A.
(
2009
).
Regulation of microtubule dynamic instability
.
Biochem. Soc. Trans.
37
,
1007
-
1013
.
Varga
V.
,
Leduc
C.
,
Bormuth
V.
,
Diez
S.
,
Howard
J.
(
2009
).
Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization
.
Cell
138
,
1174
-
1183
.
Vaughan
P. S.
,
Miura
P.
,
Henderson
M.
,
Byrne
B.
,
Vaughan
K. T.
(
2002
).
A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport
.
J. Cell Biol.
158
,
305
-
319
.
Vitre
B.
,
Coquelle
F. M.
,
Heichette
C.
,
Garnier
C.
,
Chretien
D.
,
Arnal
I.
(
2008
).
EB1 regulates microtubule dynamics and tubulin sheet closure in vitro
.
Nat. Cell Biol.
10
,
415
-
421
.
Wang
H. W.
,
Ramey
V. H.
,
Westermann
S.
,
Leschziner
A. E.
,
Welburn
J. P.
,
Nakajima
Y.
,
Drubin
D. G.
,
Barnes
G.
,
Nogales
E.
(
2007
).
Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms
.
Nat. Struct. Mol. Biol.
14
,
721
-
726
.
Watanabe
T.
,
Noritake
J.
,
Kakeno
M.
,
Matsui
T.
,
Harada
T.
,
Wang
S.
,
Itoh
N.
,
Sato
K.
,
Matsuzawa
K.
,
Iwamatsu
A.
, et al. 
. (
2009
).
Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules
.
J. Cell Sci.
122
,
2969
-
2979
.
Weisbrich
A.
,
Honnappa
S.
,
Jaussi
R.
,
Okhrimenko
O.
,
Frey
D.
,
Jelesarov
I.
,
Akhmanova
A.
,
Steinmetz
M. O.
(
2007
).
Structure-function relationship of CAP-Gly domains
.
Nat. Struct. Mol. Biol.
14
,
959
-
967
.
Wen
Y.
,
Eng
C. H.
,
Schmoranzer
J.
,
Cabrera-Poch
N.
,
Morris
E. J.
,
Chen
M.
,
Wallar
B. J.
,
Alberts
A. S.
,
Gundersen
G. G.
(
2004
).
EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration
.
Nat. Cell Biol.
6
,
820
-
830
.
Wu
X.
,
Xiang
X.
,
Hammer
J. A.
3rd
(
2006
).
Motor proteins at the microtubule plus-end
.
Trends Cell. Biol.
16
,
135
-
143
.
Zanic
M.
,
Stear
J. H.
,
Hyman
A. A.
,
Howard
J.
(
2009
).
EB1 recognizes the nucleotide state of tubulin in the microtubule lattice
.
PLoS ONE
4
,
e7585
.
Zimniak
T.
,
Stengl
K.
,
Mechtler
K.
,
Westermann
S.
(
2009
).
Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p
.
J. Cell Biol.
186
,
379
-
391
.