Filaments of Anabaena have a spaced pattern of differentiated cells called heterocysts, which is maintained as a filament grows by the regular determination of new heterocysts. By following the growth of every cell in a filament, we have identified proheterocysts (prospective heterocysts) at their earliest appearance, and described the sequence of events in the formation of the pattern. The determination of proheterocysts obeys 2 rules: (1) that there are inhibitory zones around pre-existing heterocysts, and (2) that only the smaller daughter of a division can become a heterocyst (all divisions are asymmetrical). There are, however, certain conditions in which these rules are over-ridden, where a pattern consisting of groups of consecutive proheterocysts is seen which resolves into a normal discrete pattern. This process is highly suggestive of interaction between developing cells. We have tested this hypothesis in normal growth conditions by breaking filaments near to early proheterocysts, on the assumption that this will cause a build-up of inhibitory effect of the cell upon itself. It is found that these cells regress, losing their differentiated character and dividing. We therefore propose an interactive model for pattern formation in Anabaena.

This content is only available via PDF.