We used immunological approaches to study the factors controlling the distribution of the Na,K-ATPase in fast twitch skeletal muscle of the rat. Both alpha subunits of the Na,K-ATPase colocalize with beta-spectrin and ankyrin 3 in costameres, structures at the sarcolemma that lie over Z and M-lines and in longitudinal strands. In immunoprecipitates, the alpha1 and alpha2 subunits of the Na,K-ATPase as well as ankyrin 3 associate with beta-spectrin/alpha- fodrin heteromers and with a pool of beta-spectrin at the sarcolemma that does not contain alpha-fodrin. Myofibers of mutant mice lacking beta-spectrin (ja/ja) have a more uniform distribution of both the alpha1 and alpha2 subunits of the Na,K-ATPase in the sarcolemma, supporting the idea that the rectilinear sarcomeric pattern assumed by the Na,K-ATPase in wild-type muscle requires beta-spectrin. The Na,K-ATPase and beta-spectrin are distributed normally in muscle fibers of the nb/nb mouse, which lacks ankyrin 1, suggesting that this isoform of ankyrin is not necessary to link the Na,K-ATPase to the spectrin-based membrane skeleton. In immunofluorescence and subcellular fractionation experiments, the alpha2 but not the alpha1 subunit of the Na,K-ATPase is present in transverse (t-) tubules. The alpha1 subunit of the pump is not detected in increased amounts in the t-tubules of muscle from the ja/ja mouse, however. Our results suggest that the spectrin-based membrane skeleton, including ankyrin 3, concentrates both isoforms of the Na,K-ATPase in costameres, but that it does not play a significant role in restricting the entry of the alpha1 subunit into the t-tubules.
Na,K-ATPase in skeletal muscle: two populations of beta-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules
M.W. Williams, W.G. Resneck, T. Kaysser, J.A. Ursitti, C.S. Birkenmeier, J.E. Barker, R.J. Bloch; Na,K-ATPase in skeletal muscle: two populations of beta-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules. J Cell Sci 15 February 2001; 114 (4): 751–762. doi: https://doi.org/10.1242/jcs.114.4.751
Download citation file:
Advertisement
Cited by
2021 JCS Prize winner announced
-JCSPrize.png?versionId=3749)
We are pleased to announce that the winner of the 2021 JCS Prize is Lee Dolat for his paper entitled ‘An endometrial organoid model of interactions between Chlamydia and epithelial and immune cells’.
Propose a new Workshop
-GSWorkshop.png?versionId=3749)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Cell scientist to watch: Christian Münch
-CSTW.png?versionId=3749)
Journal of Cell Science interviewed Christian Münch, who established his independent research group in 2016 at Goethe University Frankfurt. His lab studies cellular stress responses to mitochondrial protein misfolding, infection and disease, as well as developing proteomics methods.
Essay series: Equity, diversity and inclusion in cell biology
-EssaySeries.png?versionId=3749)
The JCS Essay Series is an initiative to help showcase and provide a platform for voices in the field of cell biology. The first topic we covered was 'Equity, diversity and inclusion in cell biology', and the winning and runner up essays are now available to read.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3749)
We are excited to announce the launch of the FocalPlane Network, an international directory of microscopists. The idea behind the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.