The tumor suppressor p53 is a nucleocytoplasmic shuttling protein that accumulates in the nucleus of cells exposed to various cellular stresses. One important role of nuclear p53 is to mobilize a stress response by transactivating target genes such as the p21(Waf1) gene. In this study, we investigated more closely the localization of p53 in cells following various stresses. Immunocytochemistry of fixed human fibroblasts treated with either UV light, the kinase and transcription inhibitor DRB or the proteasome inhibitor MG132 revealed abundant p53 localized to the nucleus. When cells treated with UV or DRB were permeabilized prior to fixation to allow soluble proteins to diffuse, the nuclear p53 signal was abolished. However, in cells treated with MG132, residual p53 localized to distinct large foci. Furthermore, nucleolin co-localized with p53 to these foci, suggesting that these foci were nucleolar structures. Interestingly, the MDM2 protein was found to co-localize with p53 to nucleolar structures following proteasome inhibition. Our results suggest that the p53 proteins accumulating in the nucleus following UV-irradiation or blockage of transcription are freely soluble and, thus, should be able to roam the nucleus to ensure high occupancy of p53 binding sites. However, inhibition of proteasome activity may be a unique stress in that it leads to the sequestering of p53 proteins to the nucleolus, thereby blunting the p53-mediated transactivation of target genes.

REFERENCES

Ashcroft
M.
,
Taya
Y.
,
Vousden
K. H.
(
2000
).
Stress signals utilize multiple pathways to stabilize p53.
Mol. Cell. Biol
20
,
3224
3233
Blagosklonny
M. V.
,
Wu
G. S.
,
Omura
S.
,
El-Deiry
W. S.
(
1996
).
Proteasome-dependent regulation of p21WAF1/CIP1 expression.
Biochem. Biophys. Res. Commun
227
,
564
569
Blaydes
J. P.
,
Craig
A. L.
,
Wallace
M.
,
Ball
H. M.
,
Traynor
N.
,
Gibbs
J. N. K.
,
Hupp
T. R.
(
2000
).
Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways.
Oncogene
19
,
3829
3839
Brasch
K.
(
1990
).
Drug and metabolite-induced perturbations in nuclear structure and function: a review.
Biochem. Cell Biol
68
,
408
426
Bunz
F.
,
Dutriaux
A.
,
Lengauer
C.
,
Waldman
T.
,
Zhou
S.
,
Brown
J. P.
,
Sedivy
J. M.
,
Kinzler
K. W.
,
Vogelstein
B.
(
1998
).
Requirement for p53 and p21 to sustain G2 arrest after DNA damage.
Science
282
,
1497
1501
Chehab
N. H.
,
Malikzay
A.
,
Appel
M.
,
Halazonetis
T. D.
(
2000
).
Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53.
Genes Dev
14
,
278
288
Chehab
N. H.
,
Malikzay
A.
,
Stavridi
E. S.
,
Halazonetis
T. D.
(
1999
).
Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage.
Proc. Natl. Acad. Sci. USA
96
,
13777
13782
Chen
F.
,
Chang
D.
,
Goh
M.
,
Klibanov
S. A.
,
Ljungman
M.
(
2000
).
Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors.
Cell Growth Differ
11
,
239
246
Dulic
V.
,
Kaufmann
W. K.
,
Wilson
S. J.
,
Tlsty
T. D.
,
Lees
E.
,
Harper
J. W.
,
Elledge
S. J.
,
Reed
S. I.
(
1994
).
p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest.
Cell
76
,
1013
1023
Dumaz
N.
,
Meek
D. W.
(
1999
).
Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2.
EMBO J
18
,
7002
7010
Freedman
D. A.
,
Wu
L.
,
Levine
A. J.
(
1999
).
Functions of the MDM2 oncoprotein.
Cell. Mol. Life Sci
55
,
96
107
Fritsche
M.
,
Haessler
C.
,
Brandner
G.
(
1993
).
Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents.
Oncogene
8
,
307
318
Fuchs
S. Y.
,
Adler
V.
,
Buschmann
T.
,
Yin
Z. M.
,
Wu
X. W.
,
Jones
S. N.
,
Ronai
Z.
(
1998
).
JNK targets p53 ubiquitination and degradation in nonstressed cells.
Genes Dev
12
,
2658
2663
Giaccia
A. J.
,
Kastan
M. B.
(
1998
).
The complexity of p53 modulation: emerging patterns from divergent signals.
Genes Dev
12
,
2973
2983
Ginisty
H.
,
Sicard
H.
,
Roger
B.
,
Bouvet
P.
(
1999
).
Structure and functions of nucleolin.
J. Cell Sci
112
,
761
772
Haaf
T.
,
Ward
D. C.
(
1996
).
Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains.
Exp. Cell Res
224
,
163
173
Haupt
Y.
,
Maya
R.
,
Kazaz
A.
,
Oren
M.
(
1997
).
Mdm2 promotes the rapid degradation of p53.
Nature
387
,
296
299
Hirao
A.
,
Kong
Y. Y.
,
Matsuoka
S.
,
Wakeham
A.
,
Ruland
J.
,
Yoshida
H.
,
Liu
D.
,
Elledge
S. J.
,
Mak
T. W.
(
2000
).
DNA damage-induced activation of p53 by the checkpoint kinase chk2.
Science
287
,
1824
1827
Hupp
T.
,
Meek
D.
,
Midgley
C.
,
Lane
D.
(
1992
).
Regulation of the specific DNA binding function of p53.
Cell
71
,
875
886
Hwang
B. J.
,
Ford
J. M.
,
Hanawalt
P. C.
,
Chu
G.
(
1999
).
Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair.
Proc. Natl. Acad. Sci. USA
96
,
424
428
Jayaraman
L.
,
Prives
C.
(
1999
).
Covalent and noncovalent modifiers of the p53 protein.
Cell. Mol. Life Sci
55
,
76
87
Kubbutat
M. H. G.
,
Jones
S. N.
,
Vousden
K. H.
(
1997
).
Regulation of p53 stability by Mdm2.
Nature
387
,
299
303
Li
L.
,
Ljungman
M.
,
Dixon
J. E.
(
2000
).
The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53.
J. Biol. Chem
275
,
2410
2414
Liu
L.
,
Scolnick
D. M.
,
Trievel
R. C.
,
Zhang
H. B.
,
Marmorstein
R.
,
Halazonetis
T. D.
,
Berger
S. L.
(
1999
).
p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage.
Mol. Cell. Biol
19
,
1202
1209
Ljungman
M.
,
Zhang
F.
(
1996
).
Blockage of RNA polymerase as a possible trigger for uv light-induced apoptosis.
Oncogene
13
,
823
831
Ljungman
M.
,
Zhang
F. F.
,
Chen
F.
,
Rainbow
A. J.
,
McKay
B. C.
(
1999
).
Inhibition of RNA polymerase II as a trigger for the p53 response.
Oncogene
18
,
583
592
Lu
X.
,
Burbidge
S. A.
,
Griffin
S.
,
Smith
H. M.
(
1996
).
Discordance between accumulated p53 protein level and its transcriptional activity in response to uv radiation.
Oncogene
13
,
413
418
Lu
X.
,
Lane
D. P.
(
1993
).
Differential induction of transcriptionally active p53 following UV or ionizing radiation- Defects in chromosome instability syndromes?.
Cell
75
,
765
778
Magae
J.
,
Illenye
S.
,
Tejima
T.
,
Chang
Y. C.
,
Mitsui
Y.
,
Tanaka
K.
,
Omura
S.
,
Heintz
N. H.
(
1997
).
Transcriptional squelching by ectopic expression of E2F-1 and p53 is alleviated by proteasome inhibitors MG-132 and lactacystin.
Oncogene
15
,
759
769
Maki
C. G.
,
Huibregtse
J. M.
,
Howley
P. M.
(
1996
).
In vivo ubiquitination and proteasome-mediated degradation of p53.
Cancer Res
56
,
2649
2654
Maltzman
W.
,
Czyzyk
L.
(
1984
).
UV irradiation stimulates levels of p53 cellular antigen in nontransformed mouse cells.
Mol. Cell. Biol
4
,
1689
1694
McKay
B. C.
,
Ljungman
M.
,
Rainbow
A. J.
(
1998
).
Persistent DNA damage induced by ultraviolet light inhibits p21(waf1) and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis.
Oncogene
17
,
545
555
Miyashita
T.
,
Reed
J. C.
(
1995
).
Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.
Cell
80
,
293
299
Perry
M.
,
Piette
J.
,
Zawadzki
J.
,
Harvey
D.
,
Levine
A.
(
1993
).
The mdm-2 gene is induced in response to UV light in a p53-dependent manner.
Proc. Natl. Acad. Sci. USA
90
,
11623
11627
Phair
R.
,
Misteli
T.
(
2000
).
High mobility of proteins in the mammalian cell nucleus.
Nature
404
,
604
609
Reinke
V.
,
Lozano
G.
(
1997
).
Differential activation of p53 targets in cells treated with ultraviolet radiation that undergo both apoptosis and growth arrest.
Radiat. Res
148
,
115
122
Roth
J.
,
Dobbelstein
M.
,
Freedman
D. A.
,
Shenk
T.
,
Levine
A. J.
(
1998
).
Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein.
EMBO J
17
,
554
564
Rubbi
C. P.
,
Milner
J.
(
2000
).
Non-activated p53 co-localizes with sites of transcription within both the nucleoplasm and the nucleolus.
Oncogene
19
,
85
96
Sakaguchi
K.
,
Herrera
J. E.
,
Saito
S.
,
Miki
T.
,
Bustin
M.
,
Vassilev
A.
,
Anderson
C. W.
,
Appella
E.
(
1998
).
DNA damage activates p53 through a phosphorylation-acetylation cascade.
Genes Dev
12
,
2831
2841
Sakaguchi
K.
,
Saito
S.
,
Higashimoto
Y.
,
Roy
S. C.
,
Anderson
W.
,
Appella
E.
(
2000
).
Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase- Effect on Mdm2 binding.
J. Biol. Chem
275
,
9278
9283
Shieh
S. Y.
,
Ahn
J.
,
Tamai
K.
,
Taya
Y.
,
Prives
C.
(
2000
).
The human homologs of checkpoint kinases chk1 and cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites.
Genes Dev
14
,
289
300
Shieh
S. Y.
,
Ikeda
M.
,
Taya
Y.
,
Prives
C.
(
1997
).
DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2.
Cell
91
,
325
334
Siliciano
J. D.
,
Canman
C. E.
,
Taya
Y.
,
Sakaguchi
K.
,
Appella
E.
,
Kastan
M. B.
(
1997
).
DNA damage induces phosphorylation of the amino terminus of p53.
Genes Dev
11
,
3471
3481
Smith
M. L.
,
Ford
J. M.
,
Hollander
M. C.
,
Bortnick
R. A.
,
Amundson
S. A.
,
Seo
Y. R.
,
Deng
C. X.
,
Hanawalt
P. C.
,
Fornace
A. J.
Jr.
(
2000
).
p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes.
Mol. Cell. Biol
20
,
3705
3714
Tao
W. K.
,
Levine
A. J.
(
1999
).
Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53.
Proc. Natl. Acad. Sci. USA
96
,
3077
3080
Unger
T.
,
Juven-Gershon
T.
,
Moallem
E.
,
Berger
M.
,
Sionov
R. V.
,
Lozano
G.
,
Oren
M.
,
Haupt
Y.
(
1999
).
Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2.
EMBO J
18
,
1805
1814
Wu
G. S.
,
Burns
T. F.
,
McDonald
E. R.
,
Jiang
W.
,
Meng
R.
,
Krantz
I. D.
,
Kao
G.
,
Gan
D. D.
,
Zhou
J. Y.
,
Muschel
R.
, et al. 
(
1997
).
KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene.
Nat. Genet
17
,
141
143
Zimmermann
J.
,
Erdmann
D.
,
Lalande
I.
,
Grossenbacher
R.
,
Noorani
M.
,
Furst
P.
(
2000
).
Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1.
Oncogene
19
,
2913
2920
This content is only available via PDF.