Muscle LIM protein (MLP) is a striated muscle-specific factor that enhances myogenic differentiation and is critical to maintaining the structural integrity of the contractile apparatus. The ability of MLP to regulate myogenesis is particularly interesting since it exhibits multiple subcellular localizations, being found in both nuclear and cytoplasmic compartments. Despite extensive biochemical analyses on MLP, the mechanism(s) by which it influences the myogenic program remains largely undefined. To further examine the role of MLP as a positive myogenic regulator, a yeast two-hybrid screen was employed to identify cytoplasmic-associated MLP binding partners. From this screen, the cytoskeletal protein betaI-spectrin was isolated. Protein interaction assays demonstrate that MLP and betaI-spectrin associate with one another in vivo as well as when tested under several in vitro binding conditions. betaI-spectrin binds specifically to MLP but not to the MLP related proteins CRP1 and CRP2 or to other LIM domain containing proteins. The MLP:beta-spectrin interaction is mediated by the second LIM motif of MLP and by repeat 7 of beta-spectrin. Confocal microscopy studies also reveal that MLP co-localizes with beta-spectrin at the sarcolemma overlying the Z- and M-lines of myofibrils in both cardiac and skeletal muscle tissue. Given that beta-spectrin is a known costamere protein, we propose that sarcolemma-associated MLP also serves as a key costamere protein, stabilizing the association of the contractile apparatus with the sarcolemma by linking the beta-spectrin network to the alpha-actinin crosslinked actin filaments of the myofibril.

REFERENCES

Arber
S.
,
Halder
G.
,
Caroni
P.
(
1994
).
Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation.
Cell
79
,
221
231
Arber
S.
,
Hunter
J. J.
,
Ross
J.
Jr.
,
Hongo
M.
,
Sansig
G.
,
Borg
J.
,
Perriard
J.-C.
,
Chien
K. R.
,
Caroni
P.
(
1997
).
MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure.
Cell
88
,
393
493
Bach
I.
,
Rhodes
S. J.
,
Pearse
R. V.
II
,
Heinzel
T.
,
Gloss
B.
,
Scully
K. M.
,
Sawchenko
P. E.
,
Rosenfeld
M. G.
(
1995
).
P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1.
Proc. Nat. Acad. Sci. USA
92
,
2720
2724
Beck
K. A.
,
Buchanan
J. A.
,
Malhotra
V.
,
Nelson
W. J.
(
1994
).
Golgi spectrin: identification of an erythroid-spectrin homolog associated with the Golgi complex.
J. Cell Biol
127
,
707
723
Beckerle
M. C.
(
1997
).
Zyxin: zinc fingers at sites of cell adhesion.
BioEssays
19
,
949
957
Behrens
J.
,
von-Kries
J. P.
,
Kuhl
M.
,
Bruhn
L.
,
Wedlich
D.
,
Grosschedl
R.
,
Birchmeier
W.
(
1996
).
Functional interaction of-catenin with the transcription factor LEF-1.
Nature
382
,
638
642
Bennett
V.
(
1990
).
Spectrin-based membrane skeleton: a multipotential adapter between plasma membrane and cytoplasm.
Physiol. Rev.
70
,
1029
1065
Berthier
C.
,
Blaineau
S.
(
1997
).
Supramolecular organization of the subsarcolemma cytoskeleton of adult skeletal muscle fibers.
A review. Biol. Cell
89
,
413
434
Boehm
T.
,
Foroni
L.
,
Kaneko
Y.
,
Perutz
M. F.
,
Rabbitts
T. H.
(
1991
).
The rhombotin family of cystein-rich LIM-domain oncogenes: Distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13.
Proc. Nat. Acad. Sci.USA
88
,
4367
4371
Chen
J.
,
Chien
K. R.
(
1999
).
Complexity and simplicity: monogenic disorders and complex cardiomyopathies.
J. Clin. Invest
103
,
1483
1485
Chien
K. R.
(
1999
).
Stress pathways and heart failure.
Cell
98
,
555
558
Craig
S. W.
,
Pardo
J. V.
(
1983
).
Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites.
Cell Motil
3
,
449
462
Crawford
A. W.
,
Michelsen
J. W.
,
Beckerle
M. C.
(
1992
).
An interaction between zyxin and-actinin.
J. Cell Biol
116
,
1381
1393
Danowski
B. A.
,
Imanaka-Yoshia
K.
,
Sanger
J. M.
,
Sanger
J. W.
(
1992
).
Costameres are sites of force transmission to the substratum in adult rat cardiomyoctes.
J. Cell Biol
118
,
1411
1420
Dawid
I. B.
,
Breen
J. J.
,
Toyama
R.
(
1998
).
LIM domains: multiple roles as adapters and functional modifiers in protein interactions.
Trends Genet
14
,
156
162
Devarajan
P.
,
Stabach
P. R.
,
DeMatteis
M. A.
,
Morrow
J. S.
(
1997
).
Na, K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells.
Proc. Nat. Acad. Sci. USA
94
,
10711
10716
Ehmer
S.
,
Herrmann
R.
,
Bittner
R.
,
Voit
T.
(
1997
).
Spatial distribution of-spectrin in normal and dystrophic human skeletal muscle.
Acta Neuropathol
94
,
240
246
Fung
Y. W.
,
Wang
R. X.
,
Heng
H. H. Q.
,
Liew
C. C.
(
1995
).
Mapping of a human LIM protein (CLP) to human chromosome 11p15.1 by fluorescence in situ hybridization.
Genomics
28
,
602
603
Hartwig
J. H.
(
1995
).
Actin-binding proteins. 1:spectrin super family.
Protein Profile
2
,
703
800
Jurata
L. W.
,
Kenny
D. A.
,
Gill
G. N.
(
1996
).
Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development.
Proc. Nat. Acad. Sci. USA
93
,
11693
11698
Kennedy
S.
,
Warren
B.
,
Forget
B. G.
,
Morrow
J. S.
(
1991
).
Ankyrin binds to the 15threpetitive unit of erythroid and nonerythroid-spectrin.
J. Cell Biol
115
,
267
277
Kong
Y.
,
Flick
M.
,
Kudla
A. J.
,
Konieczny
S. F.
(
1997
).
Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD.
Mol. Cell. Biol
17
,
4750
4760
Krapp
A.
,
Knöfler
M.
,
Frutiger
S.
,
Hughes
G. J.
,
Hagenbuchle
O.
,
Wellauer
P. K.
(
1996
).
The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein.
EMBO J
15
,
4317
4329
Lombardo
C. R.
,
Weed
S. A.
,
Kennedy
S. P.
,
Forget
B. G.
,
Morrow
J. S.
(
1994
).
Beta II-spectrin and beta I epsilon 2-spectrin (muscle) contain NH2-and COOH-terminal membrane association domains (MAD1 and MAD2).
J. Biol. Chem
269
,
29212
29219
Louis
H. A.
,
Pino
D.
,
Schmeichel
K. L.
,
Pomies
P.
,
Beckerle
M. C.
(
1997
).
Comparison of three members of the cystine-rich protein family reveals functional conservation and divergent patterns of gene expression.
J. Biol. Chem
272
,
27484
27491
Ludolph
D. C.
,
Konieczny
S. F.
(
1995
).
Transcription factor families: muscling in on the myogenic program.
FASEB J
9
,
1595
1604
Michelsen
J. W.
,
Schmeichel
K. L.
,
Beckerle
M. C.
,
Winge
D. R.
(
1993
).
The LIM motif defines a specific zinc binding protein domain.
Proc. Nat. Acad. Sci. USA
90
,
4404
4408
Nelson
W. J.
,
Lazarides
E.
(
1984
).
Goblin (ankyrin) in striated muscle: identification of the potential membrane receptor for erythorid spectrin in muscle cells.
Proc. Nat. Acad. Sci. USA
81
,
3292
3296
Pardo
J. V.
,
Siciliano
J. D.
,
Craig
S. W.
(
1983
).
A vinculin containing cortical lattice in skeletal muscle: transverse lattice elements (‘costameres’) mark sites of attachment between myofibrils and sarcolemma.
Proc. Nat. Acad. Sci. USA
80
,
1008
1012
Pomies
P.
,
Louis
H. A.
,
Beckerle
M. C.
(
1997
).
CRP1, a LIM domain protein implicated in muscle differentiation, interacts with-actinin.
J. Cell Biol
139
,
157
168
Porter
G. A.
,
Krikorian
J. C.
,
Winkelmann
J. G.
,
Morrow
J. S.
,
Bloch
R. J.
(
1990
).
Multiple isoforms of-spectrin in adult and neonatal rat skeletal muscle.
J. Cell Biol
111
,
428
–.
Porter
G. A.
,
Resneck
W. G.
,
Schner
M. G.
,
Porter
N. C.
,
Fowler
V. A.
,
Bloch
R. J.
(
1997
).
Two populations of-spectrin in mammalian skeletal muscle.
Cell. Motil. Cytoskel
37
,
7
19
Repasky
E. A.
,
Granger
B. L.
,
Lazarides
E.
(
1982
).
Widespread occurrence of avian spectrin in nonerythroid cells.
Cell
29
,
821
833
Sadler
I.
,
Crawford
A. W.
,
Michelsen
J. W.
,
Beckerle
M. C.
(
1992
).
Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton.
J. Cell Biol
119
,
1573
1587
Sánchez-Garciá
I.
,
Rabbitts
T. H.
(
1994
).
The LIM domain: a new structural motif found in zinc-finger-like proteins.
Trends Genet
10
,
315
320
Sanger
J. M.
,
Mittal
B.
,
Pochapin
M. B.
,
Sanger
J. W.
(
1986
).
Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin.
J. Cell Biol
102
,
2053
2066
Sanger
J. W.
,
Mittal
B.
,
Sanger
J. M.
(
1984
).
Formation of myofibrils in spreading chick cardiac myocytes.
Cell Motil
4
,
405
416
Schmeichel
K. L.
,
Beckerle
M. C.
(
1994
).
The LIM domain is a modular protein-binding interface.
Cell
79
,
211
219
Shear
C. R.
,
Bloch
R. J.
(
1985
).
Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures.
J. Cell Biol
113
,
1133
1144
Stankewich
M. C.
,
Tse
W. T.
,
Peters
L. L.
,
Ch'ng
Y.
,
John
K. M.
,
Stabach
P. R.
,
Devarajan
P.
,
Morrow
J. S.
,
Lux
S. E.
(
1998
).
A widely expressedIII spectrin associated with Golgi and cytoplasmic vesicles.
Proc. Nat. Acad. Sci. USA
95
,
14158
14163
Straub
V.
,
Bittner
R. E.
,
Leger
J. J.
,
Voit
T.
(
1992
).
Direct visualization of the dystrophin network on skeletal muscle fiber membrane.
J. Cell Biol
119
,
1183
1191
Street
S. F.
(
1983
).
Lateral transmission of tension in frog myofibers: myofibrillar network and transverse cytoskeletal connections are possible transmitters.
J. Cell. Physiol
114
,
346
364
Stronach
B. E.
,
Renfranz
P. J.
,
Lilly
B.
,
Beckerle
M. C.
(
1999
).
Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis.
Mol. Biol. Cell
10
,
2329
2342
Tilney
L.
,
Detmers
P.
(
1975
).
Actin in erythrocyte ghosts and its association with spectrin.
J. Cell Biol
66
,
508
520
Vybiral
T.
,
Winkelmann
J. C.
,
Roberts
R.
,
Joe
E.-H.
,
Casey
D. L.
,
Williams
J. K.
,
Epstein
H. F.
(
1992
).
Human cardiac and skeletal muscle spectrins: differential expression and localization.
Cell Motil. Cytoskel
21
,
293
304
Wang
D. S.
,
Shaw
G.
(
1995
).
The association of the c-terminal region of beta I sigma II spectrin to brain membranes is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-1,4,5 triphosphate binding site.
Biochem. Biophys. Res. Commun
94
,
608
615
Weed
S. A.
,
Stabach
P. R.
,
Oyer
C. E.
,
Gallagher
P. G.
,
Morrow
J. S.
(
1996
).
The lethal hemolytic mutation inspectrin providence yields a null phenotype in neonatal skeletal muscle.
Lab. Invest
74
,
1117
1129
Weiskirchen
R.
,
Pino
J. D.
,
Macalma
T.
,
Bister
K.
,
Beckerle
M. C.
(
1995
).
The cysteine-rich protein family of highly related LIM domain proteins.
J. Biol. Chem
270
,
28946
28954
Williams
M. W.
,
Bloch
R. J.
(
1999
).
Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice.
J. Cell Biol
144
,
1259
1270
Winkelmann
J. C.
,
Costa
F. F.
,
Linzie
B. L.
,
Forget
B. G.
(
1990
).
spectrin in human skeletal muscle.
J. Biol. Chem
265
,
20449
20454
Zhou
D.
,
Ursitti
J. A.
,
Bloch
R. J.
(
1998
).
Developmental expression of spectrins in rat skeletal muscle.
Mol. Biol. Cell
9
,
47
61
This content is only available via PDF.