Molecular motors perform essential functions in the cell and have the potential to provide insights into the basis of many important processes. A unique property of molecular motors is their ability to convert energy from ATP hydrolysis into work, enabling the motors to bind to and move along cytoskeletal filaments. The mechanism of energy conversion by molecular motors is not yet understood and may lead to the discovery of new biophysical principles. Mutant analysis could provide valuable information, but it is not obvious how to obtain mutants that are informative for study. The analysis presented here points out several strategies for obtaining mutants by selection from molecular or genetic screens, or by rational design. Mutants that are expected to provide important information about the motor mechanism include ATPase mutants, which interfere with the nucleotide hydrolysis cycle, and uncoupling mutants, which unlink basic motor activities and reveal their interdependence. Natural variants can also be exploited to provide unexpected information about motor function. This general approach to uncovering protein function by analysis of informative mutants is applicable not only to molecular motors, but to other proteins of interest.

REFERENCES

Avraham
K. B.
,
Hasson
T.
,
Steel
K. P.
,
Kingsley
D. M.
,
Russell
L. B.
,
Mooseker
M. S.
,
Copeland
N. G.
,
Jenkins
N. A.
(
1995
).
The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells.
Nature Genet
11
,
369
375
Bejsovec
A.
,
Anderson
P.
(
1988
).
Myosin heavy-chain mutations that disrupt Caenorhabditis elegans thick filament assembly.
Genes Dev
2
,
1307
1317
Bejsovec
A.
,
Anderson
P.
(
1990
).
Functions of the myosin ATP and actin binding sites are required for C. elegans thick filament assembly.
Cell
60
,
133
140
Bloom
G. S.
,
Endow
S. A.
(
1995
).
Motor proteins 1: kinesins.
Protein Profile
2
,
1109
1171
Bourne
H. R.
,
Sanders
D. A.
,
McCormick
F.
(
1991
).
The GTPase superfamily: conserved structure and molecular mechanism.
Nature
349
,
117
127
Brady
S. T.
(
1985
).
A novel brain ATPase with properties expected for the fast axonal transport motor.
Nature
317
,
73
75
Brown
S. S.
(
1999
).
Cooperation between microtubule-and actin-based motor proteins.
Annu. Rev. Cell Dev. Biol
15
,
63
80
Chalfie
M.
,
Tu
Y.
,
Euskirchen
G.
,
Ward
W. W.
,
Prasher
D. C.
(
1994
).
Green fluorescent protein as a marker for gene expression.
Science
263
,
802
805
Cooke
R.
(
1986
).
The mechanism of muscle contraction.
CRC Crit. Rev. Biochem
21
,
53
118
Crevel
I. M.-T. C.
,
Lockhart
A.
,
Cross
R. A.
(
1996
).
Weak and strong states of kinesin and ncd.
J. Mol. Biol
257
,
66
76
Dominguez
R.
,
Freyzon
Y.
,
Trybus
K. M.
,
Cohen
C.
(
1998
).
Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state.
Cell
94
,
559
571
Endow
S. A.
(
1999
).
Microtubule motors in spindle and chromosome motility.
Eur. J. Biochem
262
,
12
18
Fisher
A. J.
,
Smith
C. A.
,
Thoden
J. B.
,
Smith
R.
,
Sutoh
K.
,
Holden
H.M.
,
Rayment
I.
(
1995
).
X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADPBeF x and MgADPAlF4.
Biochemistry
34
,
8960
8972
Franken
S. M.
,
Scheidig
A. J.
,
Krengel
U.
,
Rensland
H.
,
Lautwein
A.
,
Geyer
M.
,
Scheffzek
K.
,
Goody
R. S.
,
Kalbitzer
H. R.
,
Pai
E. F.
, et al. 
(
1993
).
Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras.
Biochemistry
32
,
8411
8420
Frech
M.
,
Darden
T. A.
,
Pedersen
L. G.
,
Foley
C. K.
,
Charifson
P. S.
,
Anderson
M. W.
,
Wittinghofer
A.
(
1994
).
Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study.
Biochemistry
33
,
3237
3244
Funatsu
T.
,
Harada
Y.
,
Tokunaga
M.
,
Saito
K.
,
Yanagida
T.
(
1995
).
Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution.
Nature
374
,
555
559
Gibbons
I. R.
(
1996
).
The role of dynein in microtubule-based motility.
Cell Struct. Funct
21
,
331
342
Gibson
F.
,
Walsh
J.
,
Mburu
P.
,
Varela
A.
,
Brown
K. A.
,
Antonio
M.
,
Beisel
K. W.
,
Steel
K. P.
,
Brown
S. D.
(
1995
).
A type VII myosin encoded by the mouse deafness gene shaker-1.
Nature
374
,
62
64
Greene
E. A.
,
Henikoff
S.
,
Endow
S. A.
(
1996
).
The kinesin home page.
www.blocks.fhcrc.org/~kinesin/
Gulick
A. M.
,
Song
H.
,
Endow
S. A.
,
Rayment
I.
(
1998
).
X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg•ADP to 2. 3 Å resolution.
Biochemistry
37
,
1769
1776
Herskowitz
I.
(
1987
).
Functional inactivation of genes by dominant negative mutations.
Nature
329
,
219
222
Hirokawa
N.
(
1998
).
Kinesin and dynein superfamily proteins and the mechanism of organelle transport.
Science
279
,
519
526
Hodge
T. P.
,
Cope
J.
(
1996
).
The myosin home page.
http://www.mrc-lmb.cam.ac.uk/myosin/myosin.html
Houdusse
A.
,
Kalabokis
V. N.
,
Himmel
D.
,
Szent-Gyorgyi
A. G.
,
Cohen
C.
(
1999
).
Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head.
Cell
14
,
459
470
Howard
J.
(
1996
).
The movement of kinesin along microtubules.
Annu. Rev. Physiol
58
,
703
729
Hoyt
M. A.
,
He
L.
,
Totis
L.
,
Saunders
W. S.
(
1993
).
Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations.
Genetics
135
,
35
44
Inoue
S.
,
Salmon
E. D.
(
1995
).
Force generation by microtubule assembly/disassembly in mitosis and related movements.
Mol. Biol. Cell
6
,
1619
1640
Ishijima
A.
,
Kojima
H.
,
Funatsu
T.
,
Tokunaga
M.
,
Higuchi
H.
,
Tanaka
H.
,
Yanagida
T.
(
1998
).
Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin.
Cell
92
,
161
171
Kozielski
F.
,
De Bonis
S.
,
Burmeister
W. P.
,
Cohen-Addad
C.
,
Wade
R. H.
(
1999
).
The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations.
Structure
7
,
1407
1416
Kull
F. J.
,
Sablin
E. P.
,
Lau
R.
,
Fletterick
R. J.
,
Vale
R. D.
(
1996
).
Crystal structure of the kinesin motor domain reveals a structural similarity to myosin.
Nature
380
,
550
555
Ma
Y. Z.
,
Taylor
E. W.
(
1995
).
Mechanism of microtubule kinesin ATPase.
Biochemistry
34
,
13242
13251
Muller
J.
,
Marx
A.
,
Sack
S.
,
Song
Y. H.
,
Mandelkow
E.
(
1999
).
The structure of the nucleotide-binding site of kinesin.
Biol. Chem
380
,
981
992
Nasmyth
K.
,
Jansen
R. P.
(
1997
).
The cytoskeleton in mRNA localization and cell differentiation.
Curr. Opin. Cell Biol
9
,
396
400
Nonaka
S.
,
Tanaka
Y.
,
Okada
Y.
,
Takeda
S.
,
Harada
A.
,
Kanai
Y.
,
Kido
M.
,
Hirokawa
N.
(
1998
).
Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein.
Cell
95
,
829
837
Patterson
B.
,
Spudich
J. A.
(
1995
).
A novel positive selection foridentifying cold-sensitive myosin II mutants in Dictyostelium.
Genetics
140
,
505
515
Pechatnikova
E.
,
Taylor
E. W.
(
1997
).
Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase.
J. Biol. Chem
272
,
30735
30740
Porter
J. A.
,
Montell
C.
(
1993
).
Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis.
J. Cell Biol
122
,
601
612
Raw
A. S.
,
Coleman
D. E.
,
Gilman
A. G.
,
Sprang
S. R.
(
1997
).
Structural and biochemical characterization of the GTPS-, GDP• Pi-, and GDP-bound forms of a GTPase-deficient Gly42 Val mutant of Gi1.
Biochemistry
36
,
15660
15669
Rayment
I.
,
Rypniewski
W. R.
,
Schmidt-Base
K.
,
Smith
R.
,
Tomchick
D. R.
,
Benning
M. M.
,
Winkelmann
D. A.
,
Wesenberg
G.
,
Holden
H. M.
(
1993
).
Three-dimensional structure of myosin subfragment-1: a molecular motor.
Science
261
,
50
58
Rosenfeld
S. S.
,
Correia
J. J.
,
Xing
J.
,
Rener
B.
,
Cheung
H. C.
(
1996
).
Structural studies of kinesin-nucleotide intermediates.
J. Biol. Chem
271
,
30
–.
Ruppel
K. M.
,
Spudich
J. A.
(
1995
).
Myosin motor function: structural and mutagenic approaches.
Curr. Opin. Cell Biol
7
,
89
93
Ruppel
K. M.
,
Spudich
J. A.
(
1996
).
Structure-function studies of the myosin motor domain: importance of the 50-kDa cleft.
Mol. Biol. Cell
7
,
1123
1136
Sablin
E. P.
,
Kull
F. J.
,
Cooke
R.
,
Vale
R. D.
,
Fletterick
R. J.
(
1996
).
Crystal structure of the motor domain of the kinesin-related motor ncd.
Nature
380
,
555
559
Sack
S.
,
Kull
F. J.
,
Mandelkow
E.
(
1999
).
Motor proteins of the kinesin family Structure, variations and nucleotide binding sites.
Eur. J. Biochem
262
,
1
11
Sasaki
N.
,
Sutoh
K.
(
1998
).
Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II.
Adv. Biophys
35
,
1
24
Saunders
W. S.
,
Hoyt
M. A.
(
1992
).
Kinesin-related proteins required for structural integrity of the mitotic spindle.
Cell
70
,
451
458
Saxton
W. M.
,
Hicks
J.
,
Goldstein
L. S. B.
,
Raff
E. C.
(
1991
).
Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis.
Cell
64
,
1093
1102
Scott
W. G.
,
Murray
J. B.
,
Arnold
J. R. P.
,
Stoddard
B. L.
,
Klug
A.
(
1996
).
Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme.
Science
274
,
2065
2069
Sellers
J. R.
,
Goodson
H. V.
(
1995
).
Motor proteins 2: myosin.
Protein Profile
2
,
1323
1423
Shimada
T.
,
Sasaki
N.
,
Ohkura
R.
,
Sutoh
K.
(
1997
).
Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II.
Biochemistry
36
,
14037
14043
Song
H.
,
Endow
S. A.
(
1998
).
Decoupling of nucleotide-and microtubule-binding in a kinesin mutant.
Nature
396
,
587
590
Sprang
S. R.
(
1997
).
G protein mechanisms: insights from structural analysis.
Annu. Rev. Biochem
66
,
639
678
Stoddard
B. L.
,
Cohen
B. E.
,
Brubaker
M.
,
Mesecar
A. D.
,
Koshland
D. E. J.
(
1998
).
Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs.
Nature Struct. Biol
5
,
891
897
Suzuki
Y.
,
Yasunaga
T.
,
Ohkura
R.
,
Wakabayashi
T.
,
Sutoh
K.
(
1998
).
Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps.
Nature
396
,
380
383
Sweeney
H. L.
,
Rosenfeld
S. S.
,
Brown
F.
,
Faust
L.
,
Smith
J.
,
Xing
J.
,
Stein
L.
,
Sellers
J.
(
1998
).
Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket.
J. Biol. Chem
273
,
6262
6270
Waters
J. C.
,
Salmon
E. D.
(
1996
).
Cytoskeleton: a catastrophic kinesin.
Curr. Biol
6
,
361
363
Weil
D.
,
Blanchard
S.
,
Kaplan
J.
,
Guilford
P.
,
Gibson
F.
,
Walsh
J.
,
Mburu
P.
,
Varela
A.
,
Levilliers
J.
,
Weston
M. D.
, et al. 
(
1995
).
Defective myosin VIIA gene responsible for Usher syndrome type 1B.
Nature
374
,
60
61
Wells
A. L.
,
Lin
A. W.
,
Chen
L.-Q.
,
Safer
D.
,
Cain
S. M.
,
Hasson
T.
,
Carragher
B. O.
,
Milligan
R. A.
,
Sweeney
H. L.
(
1999
).
Myosin VI is an actin-based motor that moves backwards.
Nature
400
,
505
508
Woehlke
G.
,
Ruby
A. K.
,
Hart
C. L.
,
Ly
B.
,
Hom-Booher
N.
,
Vale
R. D.
(
1997
).
Microtubule interaction site of the kinesin motor.
Cell
90
,
207
216
This content is only available via PDF.