Trachynilysin, a 159 kDa dimeric protein purified from stonefish (Synanceia trachynis) venom, dramatically increases spontaneous quantal transmitter release at the frog neuromuscular junction, depleting small clear synaptic vesicles, whilst not affecting large dense core vesicles. The basis of this insensitivity of large dense core vesicles exocytosis was examined using a fluorimetric assay to determine whether the toxin could elicit catecholamine release from bovine chromaffin cells. Unlike the case of the motor nerve endings, nanomolar concentrations of trachynilysin evoked sustained Soluble N-ethylmaleimide-sensitive fusion protein Attachment Protein REceptor-dependent exocytosis of large dense core vesicles, but only in the presence of extracellular Ca2+. However, this response to trachynilysin does not rely on Ca2+ influx through voltage-activated Ca2+ channels because the secretion was only slightly affected by blockers of L, N and P/Q types. Instead, trachynilysin elicited a localized increase in intracellular fluorescence monitored with fluo-3/AM, that precisely co-localized with the increase of fluorescence resulting from caffeine-induced release of Ca2+ from intracellular stores. Moreover, depletion of the latter stores inhibited trachynilysin-induced exocytosis. Thus, the observed requirement of external Ca2+ for stimulation of large dense core vesicles exocytosis from chromaffin cells implicates plasma membrane channels that signal efflux of Ca2+ from intracellular stores. This study also suggests that the bases of exocytosis of large dense core vesicles from motor nerve terminals and neuroendocrine cells are distinct.

REFERENCES

Albillos
A.
,
Garcia
A. G.
,
Olivera
B.
,
Gandia
L.
(
1996
).
Re-evaluation of the P/Q Ca2+channel components of Ba2+currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+concentrations.
Pflugers Arch. Eur. J. Physiol
432
,
1030
1038
Alonso
M. T.
,
Barrero
M. J.
,
Michelena
P.
,
Carnicero
E.
,
Cuchillo
I.
,
Garcia
A. G.
,
Garcia-Sancho
J.
,
Montero
M.
,
Alvarez
J.
(
1999
).
Ca2+-induced Ca2+release in chromaffin cells seen from inside the ER with targeted aequorin.
J. Cell Biol
144
,
241
254
Artalejo
C. R.
,
Adams
M. E.
,
Fox
A. P.
(
1994
).
Three types of Ca2+channel trigger secretion with different efficacies in chromaffin cells.
Nature
367
,
72
76
Barnett
D. W.
,
Liu
J.
,
Misler
S.
(
1996
).
Single-cell measurements of quantal secretion induced by alpha-latrotoxin from rat adrenal chromaffin cells: Dependence on extracellular Ca2+.
Pflugers Arch. Eur J. Physiol
432
,
1039
1046
Bennett
D. L.
,
Bootman
M. D.
,
Berridge
M. J.
,
Cheek
T. R.
(
1998
).
Ca2+entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors.
Biochem. J
329
,
349
357
Bittner
M. A.
,
Holz
R. W.
(
1992
).
Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components.
J. Biol. Chem
267
,
16219
16225
Bittner
M. A.
,
Krasnoperov
V. G.
,
Stuenkel
E. L.
,
Petrenko
A. G.
,
Holz
R. W.
(
1998
).
A Ca2+-independent receptor for alpha-Latrotoxin, CIRL, mediates effects on secretion via multiple mechanisms.
J. Neurosci
18
,
2914
2922
Burgoyne
R. D.
,
Morgan
A.
,
Roth
D.
(
1994
).
Characterization of proteins that regulate calcium-dependent exocytosis in adrenal chromaffin cells.
Ann. NY Acad. Sci
710
,
333
346
Ceccarelli
B.
,
Hurlbut
W. P.
(
1980
).
Vesicle hypothesis of the release of quanta of acetylcholine.
Physiol. Rev.
60
,
396
441
Colasante
C.
,
Meunier
F. A.
,
Kreger
A. S.
,
Molgo
J.
(
1996
).
Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
Eur. J. Neurosci
8
,
2149
2156
Davletov
B. A.
,
Shamotienko
O. G.
,
Lelianova
V. G.
,
Grishin
E. V.
,
Ushkaryov
Y. A.
(
1996
).
Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein.
J. Biol. Chem
271
,
23239
23245
Davletov
B. A.
,
Meunier
F. A.
,
Ashton
A. C.
,
Matsushita
H.
,
Hirst
W. D.
,
Lelianova
V. G.
,
Wilkin
G. P.
,
Dolly
J. O.
,
Ushkaryov
Y. A.
(
1998
).
Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+.
EMBO J
17
,
3909
3920
Depotter
W. P.
,
Partoens
P.
,
Strecker
S.
(
1997
).
Noradrenaline storing vesicles in sympathetic neurons and their putative role in neurotransmitter release: An historical overview of controversial issues.
Neurochem. Res
22
,
911
919
Fonteriz
R. I.
,
Garcia-Sancho
J.
,
Gandia
L.
,
Lopez
M. G.
,
Garcia
A. G.
(
1992
).
Permeation and inactivation by calcium and manganese ofbovine adrenal chromaffin cell calcium channels.
Am. J. Physiol
263
,
818
824
Foran
P.
,
Lawrence
G. W.
,
Shone
C. C.
,
Foster
K. A.
,
Dolly
J. O.
(
1996
).
Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells—correlation with its blockade of catecholamine release.
Biochemistry
35
,
2630
2636
Henkel
A. W.
,
Betz
W. J.
(
1995
).
Monitoring of black widow spider venom (BWSV) induced exo-and endocytosis in living frog motor nerve terminals with FM1-43.
Neuropharmacology
34
,
1397
1406
Knight
D. E.
,
von Grafenstein
H.
,
Athayde
C. M.
(
1989
).
Calcium-dependent and calcium-independent exocytosis.
Trends Neurosci
12
,
451
458
Lang
J.
,
Ushkaryov
Y.
,
Grasso
A.
,
Wollheim
C. B.
(
1998
).
Ca2+-independent insulin exocytosis induced by alpha-latrotoxin requires latrophilin, a G protein-coupled receptor.
EMBO J
17
,
648
657
Lara
B.
,
Lopez
M. G.
,
Villarroya
M.
,
Gandia
L.
,
Cleeman
L.
,
Morad
M.
,
Garcia
A. G.
(
1997
).
A caffeine-sensitive Ca2+store modulates K+-evoked secretion in chromaffin cells.
Am. J. Physiol
272
,
1211
–.
Lawrence
G. W.
,
Weller
U.
,
Dolly
J. O.
(
1994
).
Botulinum A and the light chain of tetanus toxins inhibit distinct stages of Mg. ATP-dependent catecholamine exocytosis from permeabilised chromaffin cells.
Eur. J. Biochem
222
,
325
333
Lawrence
G. W.
,
Foran
P.
,
Dolly
J. O.
(
1996
).
Distinct exocytotic responses of intact and permeabilised chromaffin cells after cleavage of the 25-kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B.
Eur. J. Biochem
236
,
877
886
Lopez
M. G.
,
Albillos
A.
,
de la Fuente
M. T.
,
Borges
R.
,
Gandia
L.
,
Carbone
E.
,
Garcia
A. G.
,
Artalejo
A. R.
(
1994
).
Localized L-type calcium channels control exocytosis in cat chromaffin cells.
Pflugers Arch. Eur J. Physiol
427
,
348
354
Matteoli
M.
,
Haimann
C.
,
Torri-Tarelli
F.
,
Polak
J. M.
,
Ceccarelli
B.
,
De Camilli
P.
(
1988
).
Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction.
Proc. Nat. Acad. Sci. USA
85
,
7366
7370
Ouanounou
G.
,
Malo
M.
,
Kreger
A. S.
,
Prado de Carvalho
L.
,
Molgo
J.
(
1999
).
Changes in ionic permeability induced by trachylilysin in differentiated NG108-15 neuroblastoma cells.
Toxicon
37
,
1234
–.
Petrenko
A. G.
,
Ullrich
B.
,
Missler
M.
,
Krasnoperov
V.
,
Rosahl
T. W.
,
Sudhof
T. C.
(
1996
).
Structure and evolution of neurexophilin.
J. Neurosci
16
,
4360
4369
Pruss
R. M.
,
Stauderman
K. A.
(
1988
).
Voltage-regulated calcium channels involved in the regulation of enkephalin synthesis are blocked by phorbol ester treatment.
J. Biol. Chem
263
,
13173
13178
Rosenthal
L.
,
Meldolesi
J.
(
1989
).
Alpha-latrotoxin and related toxins.
Pharmacol. Ther
42
,
115
134
Rothman
J. E.
(
1995
).
Molecular mechanisms of intracellular protein-transport.
FASEB J
9
,
1458
–.
Shone
C. C.
,
Tranter
H. S.
(
1995
).
Growth of clostridia and preparation of their neurotoxins.
Curr. Top. Microbiol. Immunol
195
,
143
160
Taylor
C. W.
,
Broad
L. M.
(
1998
).
Pharmacological analysis of intracellular Ca2+signaling: problems and pitfalls.
Trends Pharmacol. Sci
19
,
370
375
Ushkaryov
Y. A.
,
Petrenko
A. G.
,
Geppert
M.
,
Sudhof
T. C.
(
1992
).
Neurexins—synaptic cell surface proteins related to the alpha-Latrotoxin receptor and laminin.
Science
257
,
50
56
Van der Kloot
W.
,
Molgo
J.
(
1994
).
Quantal acetylcholine release at the vertebrate neuromuscular junction.
Physiol. Rev.
74
,
899
991
This content is only available via PDF.